
NASA Contractor Report 191457

/

/7/?//
#

Advanced Transport Operating System (ATOPS)
Flight Management/Flight Controls (FM/FC)
Software Description

David A. Wolverton
Richard W. Dlckson
Winston C. Clinedlnst
Christopher J. Slominski

Computer Sciences Corporation
Hampton, Wrginla

Prepared For
Langley Research Center
under Contract NAS1-19038

April 1993

(NASA-CR- 191457) ADVANCEO
[RANSPURT uPERATING SYSTEM (ATOPS)

FLIGHT *_ANAGEMENT/FLIGHT CONTROLS

(FM/FC) SOFTWARE DESCRIPTION

Report, J-in. 1989 - FeD. 1991

(Computer Sciences Corp.) 370 D
G3/06

N93-28621

Unclas

0171911

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23681-0001





TABLE OF CONTENTS

1.0 INTRODUCTION ....................... 1

2.0 SYSTEM OVERVIEW .................... 2

2.1 PROCESSES AND EXECUTABLE IMAGES ............ 3

HDL (I/O Handler) ................... 4

FMFAST (Flight Management FAST loop executive) ..... 5

FCFAST (Flight Controls FAST loop executive) ...... 6

SLOW (Flight Management SLOW loop executive) ...... 7

DSTAR (DAS/SNAP Table Access Routine) ......... 8

VIEW (Global Section Data View Utility) ........ 9

2.2 GLOBAL SECTIONS .................... 10

2.3 INSPECTING GLOBAL VARIABLES WITH VIEW ......... 12

2.4 STARTING AND STOPPING VAX FM/FC SOFTWARE ........ 14

2.5 CONDITION HANDLING ................... 15

2.5.1 EXCEPTION LOG FILES ................. 17

3.0 I/O COMMUNICATIONS ................... 18

HDL .......................... 19

HDL MESG ....................... 25

IOF_L ........................ 26

INIOM ........................ 27

GPSPKT ........................ 28

OUTIOM ........................ 29

4.0 EXECUTIVE SOFTWARE ................... 31

FMFAST ....................... . . 32

FCFAST ......................... 33

SLOW .......................... 34

5.0 FLIGHT MANAGEMENT .................... 35

OVERVIEW ........................ 35

5.1 FAST LOOP PROCESSING: ................. 36

CDUFST (CDU Fast Loop Processing) ........... 36

ACCPRC (Accelerometer Processing) ........... 38

GPSPRC (Global Positioning Satellite Processing) .... 39

MLSEX (Microwave Landing System (MLS) Executive) .... 41

RSCON (Reset Constants) ............... 43

CNTRM (Counter Module) ................ 44

CTLBLK (Control Block) ........ ........ 46

PFILT (Pre-filter) .................. 47

XFORM (Coordinate Transformation) .......... 49

XYZIN (R-Az-EI to X-Y-Z) ............... 50

CFILT (Complementary Filter) ............. 52



ii

5.2

PRINV (Inverse Computations) ............. 54
HNAVFS (Horizontal/Vertical Navigation, Fast) ..... 55

HNAVML (Horizontal/Vertical Navigation, MLS) ..... 60
HNAVB (Horizontal/Vertical Navigation, plus Baro) . 62
HNSWIT (Horizontal/Vertical Navigation Switching) 65

HVGUID (Horizontal/Vertical Guidance) ......... 69
LEGSW (Leg Switching) ................ 73
GD3D (3D Guidance Initialization) .......... 74
AAA (Turn Vector Processing) ............. 75
DTGI (Distance-to-go (Turn) Calculations) . . . . . . 76
HVG2 (Distance-to-go (Straight Leg) Calculations) 77
TRALCBA (Primary Lateral Guidance Computations) 78

HVG6 (Primary Vertical Guidance Computations) .... 81

TGUID (Time Guidance) ................. 83

AAT (Turn Computations) ............... 86

CDG (Primary Time Guidance Computations) ....... 88

NAVIG (Simulated Airplane) ............... 90

FLYIC (Initialization) ................ 92

ENGAGE_CAS (Operate Simulator) ............ 93

SLOW LOOP PROCESSING: ................. 95

CDUEXC (CDU Executive) ................. 95

BLOW (Wind Computations) ................ 96

EPRLMT (Engine Pressure Ratio Limit) .......... 98

ERAD (Earth Radii Computations) ............ i01

HNAVSL (Horizontal Navigation Slow Loop) ........ 103

RADCAL (Earth Radius Calculations) .......... 109

CRBSC (Range and Bearing Calculations) ........ ii0

TUNPTH (Path Defined Station Tuning) ......... 112

NXTPS (Next Path Station) .............. 114

TUNEPS (Tune Path Station) .............. 115

TICHEX (Tuning Checks) ................ 116

TUNDM2 (Autotune DME #2) ................ 117

NXTSTA2 (Select Next Station) ............ 118

SEARCH STA2 (Find Next Station) ........... 119

BMPSTA2 (Pick Next-in-strip) ............. 120

CHOOSE STR2 (Select Next Longitudinal Strip) ..... 121

EXT RGE2 (Extend Search Range) ............ 122

LOOKL2 (Select Next Strip to West) .......... 123

TUNXTK (Cross Track Station Tuning) .......... 124

XTK MAN (Manual Tuning) ............... 125

XTK AUTO (Auto Tuning) ................ 126

GEOM CK (Geometry Checks) .............. 127

NXTSTA (Select Next Station) ............. 128

SEARCH INIT (Initialize Station Search) ....... 129

SEARCH STA (Find Next Station) ............ 130

CMP_FREQ (Check Station Tuning) ........... 131

BUMP STA (Pick Next-strip) .............. 132

CHOOSE STRIP (Select Next Longitudinal Strip) .... 133

LOOK L (Select Next Strip to West) .......... 134

EXT RANGE (Extend Search Range) ........... 135

TUNCK (Verify Station Geometry) ........... 136

GMSG (Generate Message) ................ 137



iii

MESG (Error Message Tables) .............. 138
SNAPOUT (Snap Output Processing) ............ 139

6.0 FLIGHT CONTROLS .................... 140
OVERVIEW ........................ 140
DATSEL (Flight Controls Data Selection) ........ 141
MSPLGC (Mode Select Panel Logic) ............ 143
KNOBER (MSP Knob Processing) .............. 152
MSPRO (Mode Select Panel Readout) ........... 153
MLOG (Mode Logic) ................... 155

DETNT (Logical Function) .............. 164
LATCMD (Lateral Path Command) ............. 165

CMPF (Localizer Complementary Filter) ........ 171
LATRL (Lateral Axis Control Laws) ........... 173

FRCWS (Forward Flight Deck Roll CWS) ......... 177
RCOM (Roll Computer - CWS) .............. 178
RBAS¢ (Roll Basic - CWS Modes) ............ 182

RCOMA (Roll Computer - Auto Modes) .......... 184

RBASCA (Roll Basics - Auto Modes) .......... 186

DCRAB (De-crab (Autoland) Maneuver) ......... 187

VERCMD (Vertical Path Command) ............. 188

PAL (Pitch Auto Land) ................ 194

ELEVP (Elevator Control Processing) .......... 196

PFFD (Pitch Forward Flight Deck) ........... 199

PAFD (Pitch Aft Flight Deck) ............. 200

PVPC (Pitch Vertical Path Command) .......... 203

VTFCL (Variable Tau Flare Control Law) ........ 204

STABT (Stabilizer Trim Logic) ............ 205

SPDCMD (Speed Command) ................. 206

ATHCL (Autothrottle Control Law) ............ 210

DSPOT (Displays Output) ................ 212

OUTIO (I/O Output Processing) ............. 214

6.1 SIGNAL FAILURE DETECTION ................ 215

DINUSE (Discrete In-Use Computations) ......... 215

SINUSE (Sensor In-Use Computations) .......... 216

DISFD (Discrete Select and Failure Detect) ....... 217

F2CMP (2nd Failure Computations) ............ 219

F2CMP2 ........................ 220

EXITFI ........................ 222

EXITF2 ........................ 223

FDSTR (Failure Data Storage) .............. 224

TEST SENSORS .................. _ • 226

FMTMG (--Format Message) ................. 227

ICO ......................... 229

DSTOR (Data Storage for STP) .............. 230

PANEL (System Test Panel Interface) .......... 231

6.2 DATA RECORDING ..................... 232

DASOT (DAS Recording Output) .............. 233

SNAP (Snap Data Storage) ................ 236
237DUMPS ........................



iv

6.3
PREFLIGHT OVERVIEW ...... _ ........... 238PRFLT (Pre-flight Test Executiv ) .......... 239

CLBIS (Control Surface Bias Outputs) ...... 241
CTLCK (Controls Check) ............. 242

ILSRC (ILS Receiver Checks) ....... 243

RDALT (Radar Altimeter Checks) ............ 244

RGYRO (Rate Gyro Checks) . ............. 245

SRVCK (Servo Checks) ................ 246

7.0 DAS/SNAP TABLE ACCESS ................. 248

DSTAR (DAS/Snap Table Access Routine) ......... 248

NSNAP (New Snap Processing) ............. 251

DASDUMP (Dump Recording Tables) ........... 252

DASPRC (DAS Table Processing) ............ 253

GIT_M (Get Item Definition) ........... 254

CHECK (Check for Multi-item Entry) .......... 255

SNAPDEL (Snap Delete) 256

SYM_SEARCH (Search Symbol Table) ........... 257

SNAPMOD (Snap Modification) ............. 259

SNPRC (Snap Processing) .............. 260

SNAPDUMP (Dump Snap Tables) ............. 261

OLDSNAP (R/W Snap Tables to Disc) .......... 262

UCASE (Convert to Upper Case) ............ 263

APPENDICES ......................... 264

A - Digital Systems Diagrams .............. 265

B - Horizontal/Vertical Guidance Computations ..... 313

C - Microwave Landing System Processing ........ 337

D - VIEW Command Entries ................ 343

F - System Global Variables .............. 351



Section 1.0 INTRODUCTION

This document describes the software created for the Flight

Management/Flight Controls (FM/FC) MicroVAX computer used on the

Advanced Transport Operating System (ATOPS) project at the Langley

Research Center. The software was developed by Computer Sciences

Corporation (CSC) for NASA under contract NASI-19038. This

document targets the software delivery of February 27, 1991 as a

baseline system.

The FM/FC host computer works in tandem with another MicroVAX

computer, referred to as the Displays computer. The document

Advanced Transport Operating System

Color Displays Software Description

MicroVAX System

should be referenced for information about Displays software.

Throughout this document, descriptions of software modules are

presented in a standardized format. The basic template is shown

below. At the top of the form is a header block containing

miscellaneous information about the module, including a one or two

sentence synopsis used as a quick reference stating the purpose of

the module. A detailed description follows which may be a small

paragraph to several pages in length. Global symbol references are

listed next. These are the common variables referenced by the

particular module. Note that passed parameter variables are not

shown here. Passed parameters are provided in the CALLING SEQUENCE

portion of the header information block.

MODULE NAME:

FILE NAME:

PROCESS:

PURPOSE:

o......

o,,,o..

..,°.o,

.......°..°°°,°°°,o.,°o...°.,.,°..°o°°°o°,,..°.....,...

.....o....o.oo°.°,°..o.°.,o°,ooo,

CALLED BY: .......

CALLING SEQUENCE: .......

CALLS TO: .......

DESCRIPTION:

,..,..o..,.o.o°o...o...,°.o..,.o,.°°°°°.o...,..°.o°..°..,....

.o...e...o.o.o.o.ooooo...........................°.,.

GLOBAL INPUTS:

GLOBAL OUTPUTS: .......



2

Section 2.0 SYSTEMOVERVIEW

The various sub sections of the system overview briefly
describe the overall configuration of the FM/FC software on the
MicroVAX flight computer. The reader should be familiar with the
VAX/VMS operating system. Several important key words are listed
below. Detailed information about these concepts is provided by
the VAX/VMS reference manuals. In particular "Introduction to VMS"
and "Guide to Using VMS" are good places to start.

Digital Command Language (DCL)
Command files
Processes
Images
Process priorities
Global sections
Exceptional conditions / Condition signaling
Condition handlers



3

Section 2.1 PROCESSES AND EXECUTABLE IMAGES

There are seven executable images associated with the FM/FC

software. Three of them are utility programs and four are FM/FC

applications programs. Their names are given below with a brief

description of their purposes.

DSTAR

SECTION

VIEW

(utilities)

manipulate data recording tables

install and remove global sections

monitor global variables

HDL

FMFAST

FCFAST

SLOW

(FM/FC applications)

perform system functions (timing, interrupts, I/O)

perform Flight Management real-time calculations

perform Flight Controls real-time calculations

perform Flight Management background processing

The environment created for the FM/FC executable images

consists of five VAX processes. They are the initial process

created from the user login and four spawned sub processes. The

utility programs run in the context of the login process. Any one

of the three may be activated from the terminal with the RUN

command. The other four images remain active continuously under

the context of their own sub process. Since the FM/FC applications

images are always active, the VMS priority system determines how

often the images actually execute. HDL, FMFAST, and FCFAST are

assigned priorities within the VMS real-time range: 19, 18 and 17,

respectively. SLOW uses the default round-robin priority of 4.

The four FM/FC applications images each have a well defined

set of responsibilities. The remaining pages of this section list

the computations performed by FMFAST, FCFAST, SLOW, and HDL. The

names of modules which make up each image are also included.



4

PROCESSNAME: HDL (I/O Handler)

PURPOSE: HDL initializes system resources to allow external I/O,
to schedule this external I/O, and to control the
subprocesses FMFAST, FCFAST, and SLOW. HDL also formats
I/O data to/from these processes.

EXECUTION PRIORITY: 19

INVOKED BY: DCL SPAWN

GLOBAL SECTIONS USED [READ(R)/WRITE(W)]:
AADCOM[R], BCKCOM[R], CDUCOM[R/W], CIOCOM[R/W],
DISNAV[R/W], DLNCOM[R/W], DSTDAT[R], DTCCOM[R/W],
FCCOM[R], INPCOM[R/W], IPLCOM[R/W], NAVCOM[R/W],
OUTCOM[R/W], RECCOM[R]

DESCRIPTION:
The executable image HDL.EXE is activated either in the

context of an interactive user or the context of a subprocess of an
interactive user which has been created using the DCL SPAWN
command. Upon activation HDL raises its priority into the real-
time region at level 19 which disables quantum expiration context
switching. HDL will then use system context to configure I/O
channels for DMA with external devices (DATAC, CVIU, Displays
MicroVAX, etc). Upon initialization completion, HDL will spawn the
subprocess DSTAR (if necessary) for a single pass through. The
subprocesses FMFAST and FCFAST will be synchronized into a 50
millisecond frame by HDL using an interrupt from the DATAC. The

DATAC will also supply a I0 millisecond clock for synchronization

of DMA I/O. This I/O data is formatted for use by the flight

application software by HDL.



PROCESSNAME: FMFAST (Flight Management FAST loop executive)

PURPOSE: To perform initialization functions for the Flight
Management (FM) foreground software and serve as the
executive for FM supporting modules.

EXECUTION PRIORITY: 18

INVOKED BY: DCL SPAWN

GLOBAL SECTIONS USED [READ(R)/WRITE(W)]:
AADCOM[R], BCKCOM[R/W], CDUCOM[R/W], CIOCOM[R/W],
DISNAV[R/W], DLNCOM[R/W], FCCOM[R/W], INPCOM[R/W],
NAVCOM[R/W], OUTCOM[R/W], RECCOM[R/W]

DESCRIPTION:
The FM process consists of those routines that provide the

capability to create and interact with the aircraft flight plan.

The ability to inspect and enter information that affects the

flight plan is provided through software that controls the CDU

(Control and Display Unit - see Contractor Report 189606).

Navigation is provided for by software control of the two Distance

Measuring Equipment (DME) tuning heads on the aircraft. The

ability exists to provide for automatic tuning or manual tuning as

selected by the CDU. Instrument Landing System (ILS), Microwave

Landing System (MLS) and/or Global Positioning Satellite signals

may be used to augment the navigation depending upon selection via

the CDU.

Aircraft guidance commands for the various automatic modes of

flight are also computed by the FM software. These may include

horizontal, vertical, and time guidance commands depending upon the

pilot selected flight mode (see description of MSPLGC).



PROCESSNAME: FCFAST (Flight Controls FAST loop executive)

PURPOSE: To perform initialization functions for the Flight
Controls (FC) software and serve as the executive for
supporting modules.

EXECUTION PRIORITY: 17

INVOKED BY: DCL SPAWN

GLOBAL SECTIONS USED [READ(R)/WRITE (W)] :
AADCOM[R], BCKCOM[R/W], CDUCOM[R], CIOCOM[R],
DLNCOM[R/W], DISNAV[R/W], DSTDAT[R], DTCCOM[R/W],
FCCOM[R/W], INPCOM[R], IPLCOM[R], NAVCOM[R/W],
OUTCOM[R/W], RECCOM[R/W]

DESCRIPTION:
The FC software receives sensor inputs from the various

interface units, calculates according to the mode control logic and
control laws selected, and issues commands to direct the aircraft
in flight. The primary commands issued to the control surfaces
include aileron command (AILCMD), elevator command (DECMD), rudder
command (RUDCMD), autothrottle position command (APCDG), and
stabilizer trim discretes (TRIMR, TRIMD). The computation of these
commands, as well as the accompanying logic and error reporting are
covered in detail in the Flight Controls section of this document.



7

PROCESSNAME: SLOW (Flight Management SLOWloop executive)

PURPOSE: To provide background processing for FM functions such as
navigation, CDU operations, printing snapshot data, and
error messages.

EXECUTION PRIORITY: 4

INVOKED BY: DCL SPAWN

GLOBAL SECTIONS USED [READ(R)/WRITE(W)]:
AADCOM[R], BCKCOM[R/W], CDUCOM[R/W], CIOCOM[R/W],
DISNAV[R/W], DLNCOM[R/W], DTCCOM[R], FCCOM[R/W],
INPCOM[R], IPLCOM[R/W], NAVCOM[R/W], OUTCOM[R/W],
RECCOM[R/W]

DESCRIPTION:
The executable image SLOW.EXEis activated by the HDL process

upon system start up. This process executes continually in the
background mode supporting those non-time-critical functions such
as CDU processing, tuning of ranging stations such as DME (distance
measuring equipment) or TACAN (Tactical Air Navigation) stations,
and printing of snapshot data and error messages.



8

PROCESSNAME: DSTAR (DAS/SNAP Table Access Routine)

PURPOSE: To provide an interactive method of selecting data

recording variables and snapshot criteria and variables.

EXECUTION PRIORITY: 4 (20 when invoked by HDL process)

INVOKED BY: RUN DSTAR (for interactive use)

Spawned by HDL at priority 20 on startup

GLOBAL SECTIONS USED [READ(R)/WRITE(W)]:

AADCOM[R], BCKCOM[R], CDUCOM[R], CIOCOM[R], DISNAV[R],

DLNCOM[R], DSTDAT[R/W], DTCCOM[R], FCCOM[R], INPCOM[R],

IPLCOM[R], NAVCOM[R], OUTCOM[R], RECCOM[R/W]

DESCRIPTION:

DSTAR is an interactive process used to select data recording

variables, snapshot criteria and variables, and set up alternate

tables for data recording. It permits an experimenter to modify an

existing data list, snapshot data specification, or alternate

table. Data recording is not actually performed by this process

but a table is created (DASPAR) which is used by data recording

software (OUTIO) running in a foreground process (FMFAST) to select

data, format it according to scale factors specified and output it

to the DATAC bus. For a detailed description of DSTAR

capabilities, see the Data Recording Section of this document.



PROCESSNAME: VIEW (Global Section Data View Utility)

PURPOSE: To examine and modify variables in the ATOPS global
sections.

EXECUTION PRIORITY: 5

INVOKED BY: RUN VIEW

GLOBAL SECTIONS USED [READ(R)/WRITE(W)]:
AADCOM[R], BCKCOM[R/W], CDUCOM[R/W], CIOCOM[R/W],
DISNAV[R/W], DLNCOM[R/W], DSTDAT[R/W], DTCCOM[R/W],
FCCOM[R/W], INPCOM[R/W], IPLCOM[R/W], NAVCOM[R/W],
OUTCOM[R/W], RECCOM[R/W]

DESCRIPTION:
This is an interactive process used to examine and modify

variables in the global sections used by the flight software. Upon

process startup, the user is prompted for a password to determine

the read/write privileges associated with that password. A default

is obtained by entering a carriage return. Passwords and

privileges are established during the system build by the system

administrator. A detailed description of VIEW commands is

contained in appendix D.



I0

Section 2.2 GLOBAL SECTIONS

Global data variables are shared within the software system
through global sections. Global sections are the fastest way a
multiple process software configuration can share data values.

Global sections are areas of physical memory which are mapped
into the virtual address space of several active images. In the
FM/FC software each global section consists of one relocatable
program section following the standard definition of the VAX
Fortran common block. The FM/FC software uses 14 global sections.

All but two, AADCOM and DSTDAT, are defined as Fortran include

files which contain one common block definition. The include files

are needed to provide the global section templates to the Fortran

compiler when compiling the Fortran modules which make up most of

the FM/FC software. The other two global sections are macro

assembly language files which are assembled directly to produce an

object file containing global symbol definitions for all common

variables. The following is a list of the global sections with a

note on the type of memory allocations contained within each.

AADCOM

BCKCOM

CDUCOM

CIOCOM

DSTDAT

DISNAV

DLNCOM

DTCCOM

FCCOM

INPCOM

IPLCOM

NAVCOM

OUTCOM

RECCOM

Navigation database

Flight Management background data

Control Display Unit data

CDU input/output data

Default recording list

Output data to Displays MicroVAX

Data link information

I/O memory for aircraft DATAC bus

Flight Controls data

Formatted DATAC Input variables

Data link information

Navigation data

Formatted DATAC Output variables

Data recording variables

Object files are created for each of the Fortran include files

by the VAX utility program BLKMAC. The Fortran compiler is not

used for this since the object modules it creates do not define the

individual variables of the common block as global symbols. The

global symbol definitions are necessary to allow VAX macro assembly

language modules efficient access to global section variables. The

file COMMON.FOR exists solely for BLKMAC. This file is a Fortran

_Block Data' module which includes each of the global section

template files and also contains initialization statements for some

of the global section variables. BLKMAC reads this file and

creates an object file for each common block referenced within.

The object files created by BLKMAC are linked into the program

SECTION which is used to create global sections. SECTION is an

interactive program that allows the user to create, refresh, or

delete the global sections. Global sectians must be created in

memory before any of the FM/FC flight software is started. Note

that SECTION will issue a warning when attempting to delete global

sections which are currently in use by applications software. The



ii

user may choose to proceed with or abort the deletion. If the
delete is not aborted, the VAX/VMS operating system removes the
sections from its global section table but does not free the
physical memory until the last image mapped to the sections has
exited. This in effect changes the global sections to private
sections.

Executable images gain access tO the global sections through
a call to the utility library module MAPCOMon startup. MAPCOM
grants read or read/write access to the various global sections
depending on predefined access privileges encoded in the file
MAPTBL.MAR. The utility program GLOBAL is used to define the
access privileges for each process. GLOBAL creates the ".OPT"
files and MAPTBL.MAR used in linking each executable image.



12

Section 2.3 INSPECTING GLOBAL VARIABLES WITH VIEW

The program VIEW is used to examine and modify variables in
the VAX global sections defined for flight software. To use this
utility the global sections must have been installed previously
using the utility SECTION. The VIEW display screen contains two
header lines and twenty lines for the placement of variables (see
the diagram on the next page). The first header line contains the
version number of VIEW, the flight system identifier to which VIEW
was linked, and the date of the flight system generation. The
second header line shows which of the four available display pages
is currently being shown. The display lines each have the line
number on the left side of the display. When variables are placed
on the display line, three additional fields are shown after the
line number. First the format code for the variable is shown.
This tells how many bytes of data comprise the selected variable,
and how the binary value is interpreted. Next on the line is the
value of the variable. The last part of the display line is the
descriptive label used to identify the variable that was placed on

the line.

To start the program enter _RUN VIEW' on an account containing

a flight system. VIEW immediately prompts for a password. The

password is used to determine the read/write privilege that VIEW

grants to the various global sections. VIEW maintains default

privileges for users with no password. The default entry into VIEW

is gained by simply entering a carriage return to the password

prompt. The person responsible for the flight system build selects

the access to each global section for both the default and password

users. Refer to appendix D for information on the VIEW commands.



13

VIEW [V5.1]: FM/FC BASELINE

Page 1
1 1.2

2 H.2

3

4 F.4

5

6

7

8

9

i0

Ii

12

13

14

15

16

17

18

19

2O

->ARRAY (16) /F=F. 8/R=2/L=6

12-FEB-1991

0 MAXF

0020 FCFLGS

-13.1027 ROLL

- FIGURE 2.1 -



14

Section 2.4 STARTING AND STOPPING VAX FM/FC SOFTWARE

There are 12 files needed for a complete FM/FC software

system. These include the seven executable images described in

section 2.1 and the following five files used to manage the

execution of the system.

RUN.COM

This command procedure is used to start the FM/FC software.

First it checks to see if an old set of log files is open (see

section 2.5) and closes them if necessary. The utility program

SECTION is automatically run next to allow the user to install or

refresh the global sections. Finally the sub processes are spawned

and exception log files opened by calls to GO.COM.

GO.COM

This command procedure opens the process exception log file

and starts the executable image. It is called once for each of the

four FM/FC software processes.

HALT.COM

This command procedure is used to properly terminate the VAX

FM/FC software. The first thing it does is close the exception log

files and delete all but the latest three versions of each. Since

the log files are process permanent files, the logical end-of-file

mark is forced to the physical end-of-file. All three sub-

processes are terminated with the DCL STOP command. Finally the

user is given the opportunity to select automatic removal of the

installed global sections.

GBLNAME.DAT

This information file is used by the utility program SECTION

as a reference to the names of all defined global sections. This

file is also used when creating the software system. Refer to

appendix E for its role in the system build.

SHOW LOG.COM

--This command procedure is used to review the current exception

log files while the system is active. Section 2.5 (condition

handling) has complete information on the log files.

Once logged into an account containing the aforementioned

files the user may start the FM/FC software by entering "@RUN" at

the console terminal. The user is immediately prompted by SECTION

to choose between installing the global sections or refreshing a

previously installed set of global sections. Finally the utility

program DSTAR is automatically run to initialize the default data

recording list. At this point the standard DCL _$' prompt is

issued and the console terminal may be used for DCL commands and

running utility programs while the FM/FC software executes.



15

Section 2.5 CONDITION HANDLING

Numerous types of exceptional conditions may occur on a
VAX/VMS system. These can be both hardware and software faults or
traps which occur when the system detects a programming error.
Without outside intervention, the VMS operating system takes
predefined actions through the default system condition handler.
User defined condition handlers may be defined "further up the
stack" to intercept exceptions before they reach the system
condition handler. The FM/FC software has defined a condition
handler to perform special operations for several commonly
occurring exceptions.

The system operator is notified of the occurrence of

exceptions in several ways. Each process has an exception counter

defined in one of the global sections (HDLCNT, FMCNT, FSTCNT,

SLWCNT). These variables contain the total number of exceptions

that have occurred in each process since the system was started.

The utility program VIEW can be used to monitor the counters. For

most exceptions an explicit notification is given at the time it

occurs. The notification consists of a brief message sent to the

system console terminal and a detailed description of the exception

placed in the process's log file (FMFAST.LOG, FCFAST.LOG, HDL.LOG,

SLOW.LOG). To eliminate unnecessary I/O, the terminal and log file

notification will only be made once every fifteen seconds for a

repeated exception. A repeated exception must have both the same

error code and originate from the same machine instruction.

Following is a list of the exceptional conditions handled by

the FM/FC condition handler. Any other exceptions signaled to the

FM/FC condition handler will simply be resignaled to the default

system condition handler after the terminal and log file

notifications have been posted.

(software traps from VMS math library)

MTH$_SQUROONEG - The square root of negative value error forces the

math library function return value to be zero. No exception

message is posted for this error.

MTH$ * - All other math library exceptions also force the function

return value to zero. Terminal and log file notification are given
for these.

(hardware faults)

SS$ FLTOVF F

SS$ FLTDIV F - These faults are modified to simulate their

corresponding traps since continuation of the applications software

after the fault cannot be done. VMS resignals the FM/FC condition

handler with the new trap. Note that the exception counter will be

incremented twice because of this action.



16

SS$ ROPRAND- This fault occurs when floating point data contains
an _llegal binary code. There is only one undefined floating point
bit pattern: the sign bit set and all other bits clear (-0). The
reserved operand is changed to a value of zero and the instruction
is restarted.

(hardware traps)

SS$ FLTOVF
SS$-FLTDIV
SS$ INTDIV
SS$--INTOVF - These traps are reflected in the exception counters
and--posted on the terminal and in the log file. The applications
software continues afterward with the following instruction. Note
that the integer overflow exception currently cannot occur in the
software since the detection is disabled by the Fortan compiler
switch /NOCHECK.



17

Section 2.5.1 EXCEPTION LOG FILES

Exception messages are saved in log files defined for each

process (HDL.LOG, FMFAST.LOG, FCFAST.LOG, SLOW.LOG). Inactive log

files may be viewed with DCL commands such as TYPE, COPY, or PRINT.

When the FM/FC software is executing, the active set of log files

are accessed with the SHOW_LOG.COM command procedure. There are
three forms available for use.

@SHOW_LOG <process_name>

@SHOW_LOG <process_name> ALL

@SHOW_LOG <process_name> SINCE

The "ALL" form will display on the user's terminal all exceptions

posted in the file, which is empty when the software system is

started. The "SINCE" form shows the user the exception messages

posted since the last time the particular log file was referenced

by @SHOW LOG. The first form is equivalent to the "SINCE" form.

Each exception message in the log file consists of a header

with the current MicroVAX date and time, followed by the aircraft

Greenwich Mean Time (GMT). Next appears the VMS exception message

followed by a traceback of the call sequence.



18

Section 3.0 I/O COMMUNICATIONS

In order for FM/FC application software (FMFAST, FCFAST, SLOW,
DSTAR, etc.) to function correctly, real-time data from external
sources must be input, and processed data must be output, in a
synchronized manner. This is the responsibility of the process
HDL.

HDL initializes system resources to allow external I/O, to
schedule this external I/O, and to control the subprocesses FMFAST,
FCFAST and SLOW. HDL also formats I/O data to/from these
processes. The executable image HDL.EXE is activated either in the
context of an interactive user or the context of a subprocess of an
interactive user which has been created using the DCL SPAWN
command. Upon activation HDL raises its priority into the real-
time region at level 19, which disables quantum expiration context
switching. HDL will then use system context to configure I/O
channels for DMA with external devices (DATAC, Displays MicroVAX,
inter-processor link, etc). The subprocesses FMFAST and FCFAST
will be synchronized into a 50 millisecond frame by HDL using an
interrupt from the DATAC. The DATAC will also supply a 10
millisecond clock for synchronization of DMA I/O. This I/O data is
formatted for use by the FM/FC application software by HDL.



19

MODULE NAME :

FILE NAME:

PROCESS :

HDL
HDL. MAR

HDL

PURPOSE: Initializing system resources to allow external I/O, to
schedule this external I/O, and to control the

subprocesses FMFAST, FCFAST, and SLOW.

CALLED BY: VMS

CALLING SEQUENCE: RUN HDL

CALLS TO: INIOM, IOFLL, LOCK, MAPCOM, OUTIOM, PCK IO

DESCRIPTION:

This module is very intimately tied with, and has been written

around, the framework of the VAX/VMS internal architecture. As

such, an understanding of VMS, in particular those portions

relating to virtual memory structure and the internals of VMS I/O,
will be required to follow the methodology used in the

configuration of this system for DMA I/O. This understanding may

be obtained from the standard VMS documentation set (in particular

VMS Version 5, Volume 8 - Device Support, paying particular

attention to Mapping I/O Space and Connecting To An Interrupt
Vector) and the text VAX/VMS Internals and Data Structures. This

understanding is assumed in this discussion and in source code

comments. The module HDL contains four functional parts. These
include:

I.) Initialization code

II.) Main loop processing

III.) Kernel mode routines used in initialization

IV.) Connect to interrupt routines

The following describes each:

I.) Initialization code - This code performs the following:

A.) Assign a channel to the default terminal so

that any error messages may be reported there.

Also assign a channel to the TXA5 serial port
which is used for packet radio link
communication.

B.) Declare an exit handler which will remove all

created subprocesses and set process priority
back to level 4.

c.) Set process priority to level 19. This puts

the process HDL into the real-time range and

will disable any quantum expiration context

switching.



2O

D.)

E.)

F.)

G.)

H.)

I.)

J.)

K.)

L.)

M.)

Lock P0 process space into the working set by
calling LOCK. This will reduce the

possibility of page faulting during main loop
execution.

Assign a channel number to each

following devices:

of the

I.) XAA0 - DATAC DRVII

2.) XAB0 - IPL DRVII

3.) XAD0 - CVIU DRVll

4.) KWA0 - KWVll

Call MAPCOM to map to the required global
sections.

Use $CRMPSC to map to the physical addresses
of the I/O registers for the DRVII and KWVII

devices. This will allow the process to
reference specific physical locations via
virtual addresses.

Call kernel mode routines which compute the

virtual addresses of DMA buffer page table

entries for use in loading Q-bus adapter

mapping registers during the connect to

interrupt start routines. These are discussed
in section 3 below.

Associate to common event flag cluster. These

event flags are used for synchronization of

the flight application processes.

If the flag STARTUP is set, spawn the process

DSTAR at priority level 20 (one above the

handler). The handler will wait at this point
for DSTAR to terminate.

Connect to interrupt vectors. A connect to
interrupt SQIO is executed for each of the
four DRVII and the KWVII devices. This

establishes connect to interrupt init, start,

interrupt service, and cancel routines as
discussed in detail in section 4.

Initialize output variables for walking bit,

_awtooth ramp, and control mode panel outputs.

Wait for first 50 millisecond interrupt, then
enable 10 millisecond clock and start main



21

loop software.

II.) Main loop processing. Main loop processing begins by

waiting for either a I0 or 50 millisecond interrupt. Upon

determining which interrupt occurred, HDL will either execute major

or minor frame processing for 50 and 10 millisecond interrupts,

respectively. Major and minor frame processing is described below:

A.) Major frame - Major frame processing begins
after a DATAC 50 millisecond attention

interrupt. This occurs in minor frame 4

several milliseconds before the minor frame 0

interrupt. The minor frame counter variable

MFRAME is set to a -I during this interval.

HDL will, at the beginning of a major frame:

i.) Read the data necessary for i0 millisecond

processing.

2.) Format 10 millisecond input data by calling

INIOM.

3.) Format i0 millisecond

calling OUTIOM.

output data by

4.) Output 262 words (112 words for effector

data plus 150 words for data recording) in
OUTCOM to the DATAC SIR. This includes the

10 millisecond output data. The

corresponding hexadecimal SIR addresses

are from 390 to 496. This data was loaded

in the preceding major frame by the process

FCFAST using the subroutine OUTIO.

5.) Read 587 words of raw data from the DATAC

SIR via DRVII into DTCCOM. This includes

hexadecimal SIR addresses IB through 266.

6.) Format input data

application software,

INPCOM.

for use by flight

using IOFLL, into

Upon completion of I/O, HDL will set event flags 64

and 65, enabling FMFAST and FCFAST to execute a
frame.

B.) Minor frame - There are five minor frames per

major frame (minor frame 0 thru 4). Minor

frame zero begins with the first i0

millisecond interrupt after the 50 millisecond

attention interrupt. Each i0 millisecond

interrupt will signal the beginning of the

next minor frame. HDL will perform the



22

following processing at the beginning of the

specified minor frame:

i.) Minor frame 0 - No I/O is performed here,

as it was done at the beginning of the

major frame (during the MFRAME = -i

interval).

2.) Minor frame 1 - This frame consists of
three functions:

a.) i0 millisecond input data is read from

the DATAC SIR.

b.) 10 millisecond input data is formatted

by INIOM.

c.) Data for I0 millisecond output is

formatted by OUTIOM.

b.) 10 millisecond output data is written

to the DATAC SIR.

3.) Minor frame 2 - Identical to minor frame I.

4.) Minor frame 3 - This frame is the same as

minor frame i, with the addition of the

display VAX interprocessor link as follows:

a.) The word count for the interprocessor
transfer is loaded into the DRVII data

register for reading by the display VAX.

This count is negated if the transfer does

not send the active navigation buffer. For
the active buffer the count is left

positive.

b.) The address for the buffer to be sent

is loaded into the DRVll buffer's address

register.

c.) The transfer is initiated.

5.) Minor frame 4 - This frame is the same as

minor frame I, with the addition of the

CVIU I/O as follows:

a.) Thirteen words of keyboard input are

read from the CVIU.

b.) The number of words of screen

information to be sent to the CVIU is

loaded into the DRVll data register for



III.)

IV. )

23

reading by the CVIU

possibility) .

(zero words is a

c.) The transfer is initiated.

d.) Keyboard input data is unpacked by the
routine KEYBRD.

Kernel mode routines - These subroutines are called from

the initialization software with the $CMKRNL system

service. This code must run in kernel mode in order to

reference the privileged registers PR$ POBR (P0 base

register) and PR$ POLR (P0 length register). These

registers are needed in order to calculate the virtual

address (in S0 space) of the DMA buffer's page table

entry. This value is used in loading the Unibus adapter

mapping registers.

Connect to interrupt code - There is one connect to

interrupt $QIO per device. A connect to interrupt SQIO

has four associated parts - initialization, start,

interrupt service, and cancel. These four parts are

doubly mapped both in process P0 space and in system SO

space allowing them to run in system context. The role

of each in this application is described below:

A.) Initialization - The only function this part

has at present is to store the system mapped

address of the device register block. While

not used at present, this could be used to

control a device's registers from another

device's ISR, should the need arise.

B.) Start - The start routine is used to load the

Q-bus adapter mapping registers with the

physical address of the DMA buffer. This

loading is achieved using the system routine

IOC$LOADUBAMAP, which uses as input the

virtual address of the buffer's page table

entry (computed in the kernel mode routines

described above). Connect to interrupt start

routines normally run at IPL 6, but since the

allocation and loading of mapping registers

requires an IPL of 8, the IPL is raised at the

beginning and then lowered back to 6 before

exiting.

C.) Interrupt service routine - This code is

executed when an interrupt is delivered from

the associated device. Generally, the only

function this has at present is to clear the

device's CSR and optionally set an event flag.

Whether an event flag is to be set after an



24

interrupt is specified as an input flag to the

connect to interrupt SQIO. Presently, the

devices which will set an event flag are the

KWVll (event flag 4, the 10 millisecond clock)

and the DATAC DRVII (event flag 5, the 50

millisecond attention interrupt).

D.) Cancel - This code is executed at the time of

process termination, and is used to release

mapping registers that had been allocated.

GLOBAL INPUTS: MODCNT

GLOBAL OUTPUTS: PACKET _D LST (in module GPSPKT.MAR), HDLCNT,

MS10ML, MS50ML, MFRAME, DTC_TO, IPL_NZ, ACT_CNT, ACT_BUF,

SEND_BUF, IOWAIT, CDUCNT



25

MODULE NAME :

FILE NAME :

PROCESS :

HDL MESG

HDL MESG. MAR

HDL

PURPOSE: Contains error messages used by HDL.

CALLED BY: Non executable

CALLING SEQUENCE: Not called

CALLS TO: None

DESCRIPTION:

HDL_MESG contains ASCII error messages used by HDL. In the

event of an error in initialization, these messages would be output
to the default terminal of the process HDL.

GLOBAL INPUTS: N/A

GLOBAL OUTPUTS: N/A



26

MODULE NAME:

FILE NAME:

PROCESS:

IOFLL

IOFLL.MAR
HDL

PURPOSE: To format 50 millisecond DATAC SIR DMA input data into
INPCOM.

CALLED BY: HDL

CALLING SEQUENCE: JSB IOFLL
CALLS TO: None

DESCRIPTION:

IOFLL is called once per major frame immediately following a

large block input from the DATAC. It is responsible for formatting

raw input data into a form usable by the flight application
software. IOFLL stores formatted input data into INPCOM.

IOFLL uses the following programmer defined macros:

1.) SMPLXF - Will scale, bias, and/or bit shift a 16

bit input integer source operand as specified,

convert to floating point, and store the result at

a destination pointed to by R0.

2.) SMPLXB - Tests the specified bit of the source and

sets or clears the byte boolean pointed to by R0

conditionally.

3.) DSMPLX - Takes as input MLS data, checks for valid,

shifts, scales, and stores the resultant floating
point value at the address specified by R0 and the

signal validity boolean at the address R0 plus the

offset specified in the macro call.

4.) ASMPLX - Similar to SMPLXF with the addition of a

validity bit test preceding the conversion. The

result is stored at the address specified in R0.

5.) GSMPLX - Similar to ASMPLX but tailored for use in

formatting GPS raw input data.

6.) SBOOLI - Tests the specified bit in R2 and, if set,

sets the boolean pointed to by R0. Otherwise the
boolean is cleared.

7.) SBOOL2 - Tests the specified bit in R2 and, if
clear, will set the boolean pointed to by R0.
Otherwise the boolean is cleared.

GLOBAL INPUTS: DTC_IN, MAGVAR

GLOBAL OUTPUTS: All variables in INPCOM plus ALTATT (in DISNAV)



27

MODULENAME:
FILE NAME:
PROCESS:

INIOM
INIOM.MAR
HDL

PURPOSE: To format i0 millisecond DATAC SIR DMA input data into
INPCOM.

CALLED BY: HDL
CALLING SEQUENCE:JSB INIOM
CALLS TO: None

DESCRIPTION:

INIOM is called at a i0 millisecond rate to format 10

millisecond raw SIR input data into floating point format for use

by flight application software. This formatted data is written
into INPCOM.

INIOM uses the following programmer defined macros:

1.) SMPLXF - Will scale, bias, and/or bit shift a 16

bit input integer source operand as specified,

convert to floating point, and store the result at

a destination pointed to by R0.

2.) ASMPLX - Similar to SMPLXF with the addition of a

validity bit test preceding the conversion. Result

is stored at the address specified in R0.

3.) FILTF - In addition to converting and scaling, the

input value is filtered.

GLOBAL INPUTS: DTC IN

GLOBAL OUTPUTS: BMACIN, HDD, P, Q, R



28

MODULE NAME:

FILE NAME:

PROCESS:

GPSPKT

GPSPKT.MAR

HDL

PURPOSE: To format differential GPS data radio uplinked from the

ground.

CALLED BY: HDL

CALLING SEQUENCE: JSB PCK IO

CALLS TO: NONE

DESCRIPTION:

This module receives radio uplink data containing differential

correction values needed by the GPSSU for its differential GPS

mode. These values are received serially, checked for errors,

formatted into the form needed for output, and loaded for output to

the DIFF. The DIFF then sends this information to the GPSSU via an

ARINC 409 channel. In addition, GPSPKT contains code to output an

initialization stream to the Packet Terminal Node Controller (TNC).

This sequence will be serially output to the TNC if the bottom bit

of the variable PKT CMD is set.

This module declares the global symbol PACKET_RD_LST which is

modified by the module HDL.

GLOBAL INPUTS: PKT CMD, RETRY, PKT IN
-- i

GLOBAL OUTPUTS: GPS OUT, HDL DATA
u



29

MODULE NAME:

FILE NAME:

PROCESS:

OUTIOM

OUTIOM.MAR

HDL

PURPOSE: To format 10 millisecond output data from OUTCOM for DMA

to DATAC SIR.

CALLED BY: HDL

CALLING SEQUENCE: JSB OUTIOM

CALLS TO: None

DESCRIPTION:

OUTIOM is called at a i00 Hertz rate (i0 millisecond interval)

before each output of 10 millisecond SIR data. It is used to

format floating point data from flight application software into

fixed point data and store that data in DTC_OUT for output.

Primary outputs are the aileron, elevator, rudder and throttle

commands (AILCMD, DECMD, RUDCMD and APCDG).

OUTIOM uses the programmer defined macro FLOAT which will

scale a floating point value pointed to by R0, convert it to 16-bit

integer and store it at the destination specified in the macro

call. Each of the primary surface commands (AILCMD, DECMD and

RUDCMD) are output to two separate SIR memory addresses (separated

by a fixed interval) to drive the A and B servo channels. External

hardware compares the two outputs and completes the link to the

servo system iff the two commands are equal. The FLOAT macro

performs both outputs from one call if a final _D' parameter is

coded. The above describes all processing performed for the rudder

and throttle commands (RUDCMD and APCDG, respectively).

The aileron and elevator commands are more complex in that the

rate damping signals (P and Q, respectively) are summed with the

basic command at the 100 Hertz rate by OUTIOM. Additionally, each

of these commands is provided with a test mode which allows an

operator to command the output of a specified fixed surface command

for a specified period of time. The desired output command (KDECP)

is specified in integer form at the output scaling, and the time

(KDECT) is specified as the (integer) number of I0 millisecond

iterations. To treat the simpler surface first, the vertical

control law inner loop creates a nominal elevator command without

pitch rate damping (DECMQ = DECMD Minus Q) at the 20 Hertz rate.

It also computes the 16 second lagged Q output QX. QX approximates

the pitch rate gyro bias and Q - QX the true pitch rate. In the

present software, DECMD is only output to the B channel. The A

channel has been fitted with hardware pitch rate complementation

and receives DECMQ and KQ, the gain to be used for Q. (Q is not

applied to either channel if a fixed value is to be output).

OUTIOM performs the following computations:



30

if (KDECT > 0) then
DTC OUT(31) = KDECP
DTC--OUT(43) = KDECP
DTC--OUT(37) = 0
KDECT = KDECT - 1

else

endif

R1 = Q - QX

DECMD = DECMQ + KQ*RI

DTC OUT (31) = INT(102.4*DECMD)

DTC--OUT(43) = INT(102.4*DECMQ)

DTC--OUT(37) = INT(204.8*KQ)

Roll rate (P) complementation of the nominal aileron command

(AILCMP) to produce the actual aileron command (AILCMD) is also

performed in OUTIOM. Roll rate is not debiased as pitch rate is,

but rather passed through a 50 msec lag filter to produce PFI.

Depending on control mode and the bits specified in LATSEL, AILCMD

is either passed through a rate limited lag or simply complemented

with the lagged roll rate. The following computations are

performed.

PFI = KTPFL*(PFI - P) + P

if ((mode = CWS) and ((LATSEL and '100'X) _ 0)) then

R2 = AILCMP + KP*P - AILCMD

R1 = R2*(I. - KTAUPF)*KAILG

(Where KAILG = 1.0)

If (RI > ALRTLM) then

R1 = ALRTLM

elseif (RI < -ALRTLM) then

R1 = -ALRTLM

endif

R1 = limit((Rl + AILCMD), 12.)

AILCMD = R1

else

AILCMD = AILCMP + KP*PFI

endif

if (KAILT > 0) then

DTC OUT(29) = KDECP

DTC OUT(41) = KDECP

KAILT = KAILT - 1

else

DTC OUT (29) = 102.4*AILCMD

DTC--OUT(41) = 102.4*AILCMD

endif

GLOBAL INPUTS: AILCMD, AILCMP, ALRTLM, APCDG, DECMQ, KAILP,

KAILG, KAILT, KDECP, KDECT, KQ, KTAUPF, KTPFL, LATSEL,

MODEX, P, Q, QX, RUDCMD

GLOBAL OUTPUTS: AILCMD, DECMD, DTC_OUT, KAILT, KDECT, PFI



31

Section 4.0 EXECUTIVE SOFTWARE

The four FM/FC VAX applications processes each have main

modules which are entered directly from VMS when their respective
executable images are started. The executable image HDL is covered

in section 3.0 and will not be mentioned again in this section.

The processes FMFAST, FCFAST and SLOW each have main modules which
are described in the following pages.

Main modules contain operations to set up and initialize items

which effect the entire process in which they reside. They also

serve as a caller of subroutines which perform the actual

computations for Flight Management, Navigation, Guidance and Flight
Controls.



32

MODULE NAME:

FILE NAME:

PROCESS:

FMFAST

FMFAST.FOR

FMFAST

PURPOSE: TO serve as the executive routine for the Flight

Management fast loop processing.

CALLED BY: DCL SPAWN

CALLING SEQUENCE: N/A

CALLS TO: ACCPRC, ASSIGN, CDUFST, GPSPRC, HNAVFS, HVGUID,

MAPCOM, MLSEX, NAVIG, TGUID

DESCRIPTION:

This module serves as the executive for the FM fast loop

processing. It invokes the VMS system service SYS$CMEXEC to call

the LOCK utility to lock the P0 working set in memory. If any

errors occur while attempting this operation, a message is

displayed on the system console and the process stops. The next

initialization activity is to associate to cluster #2 event flag 64

for communication with the I/O executive. Once again, if any

errors occur during this process, execution is terminated. MAPCOM

is then called to link the FMFAST process to the appropriate global

sections. The address of the current DAS time is placed in a

variable (TM ADR) to be used by an exception handler for the ATOPS

flight software processes. This handler is activated via the

LIB$ESTABLISH VMS system service. Next, SYS$ERROR and SYS$OUTPUT

are assigned to the appropriate unit for the display of run-time

error and informative messages. The final initialization

activities are setting the cold start (COLDST) variable true and

clearing the timer overflow indicator (FMOVER).

At this point the VMS system service SYS$WAITFR is invoked to

wait for the setting of event flag 64 from the I/O Handler which

indicates that data has arrived from the DATAC and foreground

processing can begin. Once received, this flag is immediately

cleared and the FM foreground modules are called in the following

order: CDUFST, ACCPRC, MLSEX (if RUNM is true), GPSPRC, NAVIG,

HNAVFS, HVGUID, and TGUID.

The final activity of FMFAST is to read event flag 64 again.

If it is set at this point it indicates that a timer overflow has

occurred (since data must have arrived from the DATAC prior to

foreground processing completion) and an overflow flag is

incremented accordingly. In any event, processing continues by

returning to the activities described in the previous paragraph.

GLOBAL INPUTS: HRSS, RUNM

GLOBAL OUTPUTS: COLDST, FMCNT, FMOVER



33

MODULENAME:
FILE NAME:
PROCESS:

FCFAST
FCFAST.FOR
FCFAST

PURPOSE: To serve as the executive routine for the Flight Controls
fast loop processing.

CALLED BY: DCL SPAWN
CALLING SEQUENCE:N/A
CALLS TO: ASSIGN, ATHCL, DASOT, DATSEL, DINUSE,

DSPOT, ELEVP, FDSTR, F2CMP, LATCMD,
MAPCOM, MLOG, MSPLGC, MSPRO, PANEL,
SINUSE, SNAP, SPDCMD,OUTIO, VERCMD

DISFD,
LATRL,
PRFLT,

DESCRIPTION:
This module serves as the executive for the FC fast loop

processing. It invokes the VMS system service SYS$CMEXECto call
the LOCK utility to lock the P0 working set in memory. If any
errors occur while attempting this operation, a message is
displayed on the system console and the process stops. The next
initialization activity is to associate to cluster #2 event flag 65
for communication with the I/O executive. Once again, if any
errors occur during this process, execution is terminated. MAPCOM

is then called to link the FCFAST process to the appropriate global

sections. The address of the current DAS time is placed in a

variable (TM ADR) to be used by an exception handler for the ATOPS

flight software processes. This handler is activated via the

LIBSESTABLISH VMS system service. Next, SYS$ERROR and SYS$OUTPUT

are assigned to the appropriate unit for the display of run-time

error and informative messages. The final initialization

activities are setting the cold start (COLDST) variable true and

clearing the timer overflow indicator (FMOVER).

At this point the VMS system service SYS$WAITFR is invoked to

wait for the setting of event flag 65 from the I/O Handler, which

indicates that data has arrived from the DATAC and foreground

processing can begin. Once received, this flag is immediately

cleared and the FC foreground modules are called (conditionally) in

the following order: DINUSE, SINUSE, DISFD, DATSEL, MSPLGC, MLOG,

LATCMD, VERCMD, SPDCMD, LATRL, ELEVP, ATHCL, PRFLT, FDSTR, F2CMP,

PANEL, MSPRO, DSPOT, DASOT, SNAP and OUTIO.

The final activity of FCFAST is to read event flag 65 again.

If it is set at this point it indicates that a timer overflow has

occurred (since data must have arrived from the DATAC prior to

foreground processing completion) and an overflow flag is

incremented accordingly. In any event, processing continues by

returning to the activities described in the previous paragraph.

GLOBAL INPUTS: FCOVER, FLYFLG, FSTCNT, HOLDM, MAXF, MFRAME,

MSWIT, RUNM, TIME, TOG100, WDTV

GLOBAL OUTPUTS: COLDST,

TOG100, WDTV

FCCNT, FCOVER, FSTCNT, MAXF, TIME,



34

MODULENAME:
FILE NAME:

SLOW
SLOW.FOR

PURPOSE: To serve as the executive routine for the Flight
Management slow loop processing.

CALLED BY: DCL SPAWN
CALLING SEQUENCE: N/A

CALLS TO: ASSIGN, BLOW, CDUEXC, EPRLMT,

HNAVSL, LOCK, MAPCOM, SNAPOUT

ERAD, GMSG,

DESCRIPTION:

This module serves as the executive for Flight Management slow

loop processing. Upon start up it calls LOCK to lock the P0

working set into memory to preclude being "swapped out". It then

calls MAPCOM to link the SLOW process to the appropriate global

sections for communication with the foreground processes (FMFAST

and FCFAST). The address of the current DAS time is placed in a

variable (TM ADR) to be used by an exception handler for the ATOPS

flight software processes. This handler is activated via the

LIB$ESTABLISH VMS system service. Next SYSSERROR and SYS$OUTPUT

are assigned to the appropriate unit for the display of run-time

error and informative messages. The final initialization

activities are the setting of the CDU initialization flag

(CDU_INIT) and the assigning of the onboard line printer and system

test panel to the appropriate logical units for the display of

flight software failure messages, the printing of data recording

tables and snapshot data.

Following the initialization activities is a sequence of code

that is executed continuously until the system is halted. This

code consists of a series of calls to background software routines

in the following order: CDUEXC, ERAD, BLOW, EPRLMT, HNAVSL,

SNAPOUT (if I/O not active and data is available for printing) and

GMSG (if I/O not active and data is waiting for display).

The final activity of SLOW is to clear the cold start flag

(COLDST) and update the exception counter (SLWCNT). As stated

previously, processing continues by returning to the activities

described in the preceding paragraph.

GLOBAL INPUTS: HRSS, IOACT, RPTR, SPTR, WRDCNT

GLOBAL OUTPUTS: CDU_INIT, COLDST, SLWCNT



35

Section 5.0 FLIGHT MANAGEMENT

FLIGHT MANAGEMENT OVERVIEW

The Flight Management routines provide for navigation,

guidance and the ability to create and interact with the aircraft

flight plan. The ability to inspect and enter information that

affects the flight plan is provided through software that controls

the CDU (Control Display Unit) and MSP (Mode Select Panel). The

look-up and usage of the system data base (Bulk Data) is done via

the CDU. This software is described in the Advanced Transport

Operating System (ATOPS) Control Display Unit Software Description,

NASA Contractor Report 189606.

The MSP controls the selection of the various modes of

automatic guidance and -- depending on the selected mode -- can

control the position of the aircraft directly using the MSP knobs

for airspeed, altitude, flight path angle and track angle.

Navigation and guidance software is described in this section. The

MSP interface software resides in the Flight Controls process and

is described in that section of this document.



36

5.1 FAST LOOP PROCESSING:

MODULE NAME:

FILE NAME:

PROCESS:

CDUFST (CDU Fast Loop Processing)
CDUFST.FOR

FMFAST

PURPOSE: Serve as executive for the fast loop CDU processing.

CALLED BY: FMFAST

CALLING SEQUENCE: CALL CDUFST

CALLS TO: GET REAL

DESCRIPTION:

This procedure is the interface between the background CDU

software in the process SLOW, and the flight systems real-time

processing. There are four distinct sections of code in the module

corresponding to independent CDU functions.

The first section controls Navigation Display update requests.

The variable GDTIME contains the time of the last update request

made by the flight management computer. This variable is compared

to the current system time, and if they differ by at least six

seconds, an update request is made. Some CDU modules force a

display update by storing a zero in GDTIME. An update request

consists of setting the flag SEND BUF to cause the I/O handler

process to transmit the guidance buffers to the display computer.

The actual update request flag MAPUPD is set on two frames after

the I/O handler request to assure the guidance buffer transmissions

are complete.

The map background of the Navigation Display is centered on

particular reference points when it is placed in _Plan mode'.

CDUFST stores the latitude and longitude of a reference point which

is determined by current CDU modes. If there is an active flight

plan, the map center will be the current destination waypoint. If

there is only a provisional flight plan available, the reference

point becomes the last waypoint on the flight plan. If neither of

these situations are satisfied, the map center becomes the origin

airfield (if selected) or the current position of the aircraft.

When a new flight plan has been enabled, the sequence control
variable SETGD is set to _2' to start the determination of the

available guidance modes of the new flight plan. The code waits

one complete real-time frame before setting the mode flags to

assure the demode/re-mode operations occurring while modifying a

flight plan do not occur in one real-time frame. After the wait,

the guidance flags are set as follows. '2D' guidance will be

allowed as long as the new flight plan contains two or more

waypoints. If _2D' guidance is possible and each waypoint has an

associated altitude constraint, _3D' guidance will be allowed.

_4D' guidance is allowed when _3D' guidance has been verified, a

speed constraint exists for each waypoint, and Reference Time of

Arrival (RTA) has been assigned to one of the flight plan

waypoints.



37

The last section of CDUFST determines when a TOPMS run has
completed. Once a TOPMSrun has been initiated, the CDU portion
will be forced to reset if the aircraft has accelerated to 64 knots
and subsequently decelerated to below 20 knots. The run is also
canceled if the aircraft wheel squat switch becomes false or the

displays computer signals termination through the discrete word

DISPST.

GLOBAL INPUTS: ACTCNT, AIRPTS, CTRF, DISPST, GDTIME, GS, GUID2D,

GUID3D, GUID4D, LAT, LATCEN, LON, LONCEN, MAPUPD, MODCNT,

NAV64K, PMODE, RTA_PTR, SEND_BUF, SETGD, SOAT, SQUAT,

TIME, TKFLEN, TOINDX, TOWD, TOWPT, TOWS, TST3D, TST4D,

WPT_ACT, WPT_MOD

GLOBAL OUTPUTS: GDTIME, GUID4D, LATCEN, LONCEN, MAPUPD, SEND_BUF,

SETGD, SOAT, TKFLEN, TOINDX, TOWD, TOWS



38

MODULENAME:
FILE NAME:
PROCESS:

ACCPRC (Accelerometer Processing)
ACCPRC.FOR
FMFAST

PURPOSE: TO compute and debias the body mounted accelerometer
inputs.

CALLED BY: FMFAST
CALLING SEQUENCE:CALL ACCPRC
CALLS TO: SCOSD, MXV

DESCRIPTION:
This module computes the body to flight path vector rotation

matrix (LMB) as follows:

LMB(i, I) = CTHET*CDTK
LMB(I,2) = SROLL*STHET*CDTK- CROLL*SDTK
LMB(I,3) = CROLL*STHET*CDTK+ SROLL*SDTK

LMB(2,1) = CTHET*SDTK
LMB(2,2) = SROLL*STHET*SDTK + CROLL*CDTK

LMB(2,3) = CROLL*STHET*SDTK - SROLL*CDTK

LMB(3,1) = STHET

LMB (3, 2) = -SROLL*CTHET

LMB(3,3) = -CROLL*CTHET

Where: SDTK = sin(DFTANG), STHET = sin(PITCH),

SROLL = sin(ROLL), etc.

It then sums the bias terms (BIASBA) computed by MLSEX with

the accelerometer input vector (BMACIN) to produce the debiased

accelerations in the body axis (BMACC), and rotates BMACC into the

inertial vector (via a call to MXV) to produce ACCB. This vector

is conditionally unpacked into XTKACC, ATKACC and HDD by other

procedures (ELEVP, HNAVFS).

GLOBAL INPUTS: BIASBA, BMACIN, DFTANG, PITCH, ROLL

GLOBAL OUTPUTS: ACCB, BMACC, CROLL, CTHET, SROLL, STHET



39

MODULE NAME :

FILE NAME :

PROCESS :

GPSPRC (Global Positioning Satellite Processing)
GPSPRC.FOR

FMFAST

PURPOSE : To compute GPS derived X, Y and Z position, and analogs

of the glideslope and localizer deviation variables to be

used for display and for the land control laws.

CALLED BY: FMFAST

CALLING SEQUENCE: CALL GPSPRC

CALLS TO: MXV, SCOSD, SQRT

DESCRIPTION:

GPSPRC begins by examining the GPS status words (GRSSTx), the

GPSVLD discrete (set by IOFLL based on the input data validity

bits) and the Horizontal Dilution of Precision figure (GPHDOP -

input from the GPSSU by IOFLL). This information is used to set

the GPS Navigation Valid (GPNAVV) and GPS select index (GPSSEL:

0-bad, 1-poor, 2-good), used by the navigation algorithms, as well

as the Satellites in view (SATINVW) and GPS receiver mode (GPSMOD)

words, displayed for operator information. If GPNAVV is true and

other criteria are met, the GPS Land Valid (GPLNDV) is also set.

If GPLNDV is true and GPS land is selected (GPLND true), a bit is

set in FCFLGS to cause _GPS ON' to be displayed on the Nay Display
unit.

If GPNAVV is false, the IRS North and East velocities are

integrated into Hybrid Latitude and Longitude to keep these data

current. Differences are then computed between the hybrid LAT, LON

and ALT and the equivalent IDD and MLS quantities. Deltas are also

computed between absolute GPS and IDD Lat and Lon. This data is

for monitoring purposes only.

If GPLND is selected, GPLNDV is true, LAND mode requirements

are met and MLSMOD is false, then Hybrid LAT, LON and ALT are also

differenced with MLS Azimuth or ILS Localizer antenna site LAT, LON

and ALT. The resultant deltas are converted to runway coordinate

X, Y, Z and passed through a second order filter to produce

equivalents of the MLS XHAT, YHAT and ZHAT. This vector is then

used to produce GPS derived equivalent values of the ILS glideslope

(GPSBTA) and localizer (GPSETA). Hybrid VN, VE, and HDOT are also

rotated into the runway axes to produce equivalents of the MLS

velocities, XDH, YDH and ZDH. Either an ILS or MLS type approach

and landing may then be made, depending on the setting of the MLS

configuration word (MCONF).

GLOBAL INPUTS: AIRPTS, ALTCOR, ANTLAT, ANTLON, COLDST, COSRH,

CROLL, CTHET, DIFMOD, DLATFT, DLONFT, FLYFLG, GPHDOP,

GPLND, GPNAV, GPSLAT, GPSLON, GPVDOP, GPSVLD, GRSSTI,

GRSST2, GSA, GUID2D, HDGTRU, HYBALT, HYBHDT, HYBLAT,

HYBLON, ICM, IDDLAT, IDDLON, ILSZON, LANDR, LANDE, LMB,

MCONF, MINSATH, MLSALT, MLSLAT, MLSLON, MLSMOD, MXHDOP,

RUN, RWYHDG, RYELEV, SINRH, SROLL, STHET, TANGSA, VEINS,

VNINS, WGSMSL, WPT ACT,



40

GLOBAL OUTPUTS: DLALTM, DLLATA, DLLATM, DLLONA, DLLONM, DLTALT,

DLTLAT, DLTLON, FCFLGS, GPBTAV, GPINIT, GPLNDV, GPNAVV,

GPSBTA, GPSETA, GPSMOD, GPSSEL, HGPIP, HYBLAT, HYBLON,

LMB, SATINVW, XGPIP, XDH, XHAT, YDH, YHAT, YPROF, ZDH,
ZHAT



41

MODULE NAME:

FILE NAME:

PROCESS:

MLSEX (Microwave Landing System (MLS) Executive)
MLSEX.FOR

FMFAST

PURPOSE: To calculate the aircraft position and velocities in the

MLS coordinate system.

CALLED BY: FMFAST

CALLING SEQUENCE: CALL MLSEX

CALLS TO: CFILT, CNTRM, CTLBLK, PFILT, PRINV, RSCON, UNPK,

XFORM, XYZIN

DESCRIPTION:

Module MLSEX contains the computational routines which provide

the MLS derived inputs to the Navigation, Display and Flight

Control systems. It consists of a short executive portion and a

series of subroutines called conditionally from the executive. All

processing is under control of the MLS Configuration word (MCONF),

which is normally set via the VIEW utility. Among other things,

this word determines whether MLS calculations are to be made and,

if so, whether the real or simulated input data is to be used. The

configuration control parameters are identified and described in

Appendix C, as well as in NAVCOM.INC.
MLSEX first checks for initialization conditions. If the MLS

Compute discrete (MLSC) is false, or the Flight Controls IC button

has been pressed or the MLS configuration word has been changed

(MCONF not equal PMCONF), The first pass flag (FPF) is set to force

re-initialization when computations are next begun. The MLS valid

discrete (MLSVAL) is then cleared and UNPK is called to unpack the

upper six bits of the configuration word into the associated

booleans. (The next two bits of MCONF affect only the usage of MLS

parameters by other modules, and are unpacked in procedure MLOG

when MLS mode is selected). The MSB of the configuration word is

then checked. If clear, or if LABFLG is true and ILSZON is false

(simulation in the EASILY lab generates erroneous signals when

outside of normal coverage), MLSC and MLSVAL are cleared and

processing ends. Otherwise, processing continues by checking the

FPF flag.

If FPF is true, subroutine RSCON is called to set up the

airport and receiving antenna parameters according to the selection

words RWYSEL and ANTSEL. MLSEX next calls each of the remaining

subroutines in the order described below:

CNTRM - Operate the validity counters;

CTLBLK - Compute the Complementary Filter Run counter

(CFRUN) and the solution validity (MLSVAL);

PFILT - Operate the MLS signal prefilters;

XFORM - Compute the rotation matrix LMB and rotate the

receive antenna vector into the runway axis;



42

XYZIN - Compute XYZ position from R, Az & Ell;

CFILT - Operate the XYZ Complementary Filter;

PRINV - Compute the predicted R, Az & Ell inputs for the

next pass.

CFILT and PRINV are only called when CFRUN is non-zero.

GLOBAL INPUTS: CFRUN, IC, ILSZON, LABFLG, MCONF, MLSC

GLOBAL OUTPUTS: BMAFLG, EL2F, MLSC, MLSVAL, RLMLS, SIMILS, VGSFLG



43

MODULE NAME:

FILE NAME:

PROCESS:

RSCON (Reset Constants)

MLSEX.FOR

FMFAST

PURPOSE : To set up the airport and receiving antenna parameters

according to the selection words RWYSEL and ANTSEL.

CALLED BY: MLSEX, HNAVFS

CALLING SEQUENCE: CALL RSCON

CALLS TO: SCOSD

DESCRIPTION:

RSCON is called by MLSEX on the first pass after MLSC becomes

true, and by HNAVFS when MLSMOD is set true. This latter call is

to take care of the case when Global Positioning Satellite

navigation is selected into MLS coverage and some GPS autoland

parameters might have been set up prior to selection of MLS mode.

RSCON loads an entry of the RWYDEF array into the RWY DEF vector

according to the RWYSEL index, and loads an entry of the ANT OFF

array into the ANT POS vector according to the ANTSEL index.

RWYSEL values of 1 and 2 select definitions for runways at Wallops

Island and Atlantic City, respectively, with a third entry

reserved. ANTSEL values of 0, 1 and 2 select the tail, roof and

chin antennas, respectively. The ANT POS vector describes the

position of the selected aircraft receiving antenna relative to the

aircraft center of gravity, and the RWY DEF vector describes the

location of the Range and ELI transmitter antennas and the

glidepath intercept point (GPIP) relative to the MLS Azimuth

antenna (MLS origin), and the Lat, Lon, elevation and phase center

bearing (AZ_BRG) of the Azimuth antenna.

RSCON also calls SCOSD to compute the sine and cosine of

AZ BRG (SINAZB, COSAZB).

GLOBAL INPUTS: ANTSEL, RWYDEF, RWYSEL

GLOBAL OUTPUTS: COSAZB, MCONF, RWY DEF, SINAZB



44

MODULENAME:
FILE NAME:
PROCESS:

CNTRM (Counter Module)
MLSEX.FOR
FMFAST

PURPOSE: To maintain a history of the MLS data validities and the

complementary filter position limit exceedances.

CALLED BY: MLSEX

CALLING SEQUENCE: CALL CNTRM

CALLS TO: None

DESCRIPTION:

This module maintains a 128-cycle history of the valid flags

associated with the MLS data ( MLSSV = RV, AZV, ELIV ), and the

complementary filter position limit exceedants ( CF_LIM XC ), and

sets the IC_PF, PF_IC, and PF_CVAL Boolean arrays. Each history
consists of a 128-bit bit string (4 long words). The associated

counter (MLSSVC, CFXCC) is updated only when the state of the

validity bit differs from the state of the history bit for that

cycle. The counter thus indicates the number of valid cycles out

the previous 128.
If the FPF or ICMLS flag is set, all flags, counters and

histories are reset to their initial values and the ICMLS flag is

cleared. (FPF is used again in subroutine CTLBLK). Otherwise,

processing continues by monitoring the signal validity and

complementary filter validity in a three pass _DO' loop (for R, Az,

EL1 and X, Y, Z). Initially, the local signal valid (MLSLSV) is

set equal to the raw signal valid. Then, once the complementary

filter has run .at least 6 seconds (CFRUN > 120), outlier errors

(OTLERR) are computed as (MLSRAW - MLSS PRED). OTLIR V is set true

if the corresponding OTLERR is less than OUTLIR_LIM, and MLSLSV is
set to the _AND' of MLSSV and OUTLIR V.

Next the validity history (MLSS HIST) and validity counter

(MLSSVC) is updated. The counter value is then checked to set the

operate discretes. If MLSLSV is true, the following is performed:

o The appropriate bit in MLSS HIST is set and,

if previously clear, MLSSVCqs incremented;

o If MLSSVC is equal to 1 or 58, the

corresponding IC PF flag is set, indicating

that some prefilter initialization must be

performed. If equal to 58, the PF IC flag is

also set, indicating that the prefilter for

this signal has been fully initialized;

o If the validity count is >= 115, the PF CVAL

flag is set to indicate that the corresponding

signal is usable for position computation (see

XYZIN).



45

If MLSLSV is false the appropriate bit in MLSS_HIST is cleared and,

if appropriate, MLSSVC is decremented.
If MLS is valid (MLSVAL is set by CTLBLK when CFRUN reaches

200), the following is performed:

o The prefilter validity (PF CVAL) and PF IC

flags are cleared when the associated counter
becomes less than 18.

o The complementary filter exceedance counters

and histories are updated.

o If CF LIM XC is true (a limit has been

exceeded), the appropriate history is updated.

If CF XC C then exceeds 70, CFXCV is set

false, which will subsequently cause MLSVAL to
be lost.

o If CF LIM XC is false, the counter and history

are updated. No further action is necessary,

as CFXCV is set true during initialization,

and can only be set false when MLSVAL is true
and CF LIM XC is also true.

If MLSVAL is false, the PF CVAL flag is cleared when its

associated counter becomes less than 100, the PF IC flag is cleared

at 58 and the IC PF flag is set at a count of zero.

Finally, th--e history pointers (indices) are updated in

preparation for the next iteration.

GLOBAL INPUTS: CFRUN, MLSRAW, MLSSV, MLSVAL

GLOBAL OUTPUTS: CFRUN, EX, OTLERR



46

MODULE NAME:

FILE NAME:

PROCESS:

CTLBLK (Control Block)

MLSEX.FOR

FMFAST

PURPOSE: To compute the CFILT Run counter (CFRUN) and the MLS

Valid flag (MLSVAL).

CALLED BY: MLSEX

CALLING SEQUENCE: CALL CTLBLK

CALLS TO: VMG

DESCRIPTION:

This module controls selection of the altitude (Z) reference,

initialization of the MLS Complementary Filter, operation of the CF

Run counter (CFRUN), and setting of the MLS valid discrete

(MLSVAL).

Initially, the first pass flag (FPF) is checked. If set, it

is cleared, the ICMLS flag is set, the MLS second fail flag

(FAIL2(9), set by F2CMP if any signal required by MLS is invalid)

is cleared, and the procedure is exited. If FPF is clear,

processing continues by setting the CF Count Valid (CF_CVAL)

discrete initially equal to the _AND' of the three exceedance count

valid flags (CFXCV), the PF count valid flags for Range and Azimuth

(PF_CVAL) and the 'NOT' of FAIL2(9). The altitude reference index

(ALTREF) is initialized to zero. If CF CVAL is true and GRD is

false (the aircraft is in the air), ALTREF is selected as follows:

If the MLS _X' position is greater than X HRSW (part of RWY DEF),

EL1 is primary and only; else HRAD is pr1_mary and only. HRAD is

the default reference if GRD is true or CF CVAL false.

If the primary altitude reference _ invalid, CF CVAL is

cleared. Otherwise, the switch ALTREF is set to the selected

reference. A check is then made of the Inertial Reference System

(IRS) validity flags. If the IRS Attitude Valid (IATTV) is false,

or either IRS Nay Valid (INAVV) or IRS Serial Bus Valid (ISBV) is

false when the Body Mounted Accelerometer select flag (BMAFLG) is

false, a counter is incremented. If this counter reaches 5,

CF CVAL is cleared.

If, after all checks, CF CVAL is true and CFRUN is less than

200, the CFRUN counter is checked. If CFRUN = 0, ICCF is set true

(causing the complementary filter to be initialized). If CFRUN is

less then 200, CFRUN is incremented if the magnitude of the error

vector (EX) is less than 210 feet. Once CFRUN becomes equal to

200, MLSVAL is set true.

If CF CVAL is false, MLSVAL is set false and CFRUN is cleared

to 0. If CFRUN was initially greater than zero, ICMLS is also set

to force a complete reinitialization of the solution.

GLOBAL INPUTS: BMAFLG, CFRUN, EX, FAIL2, GRD, HRV, IATTV, INAVV,

ISBV, MLSRAW, MLSSV, MLSVAL, POSHAT, RADALT, X_HRSW

GLOBAL OUTPUTS: CFRUN, FAIL2, MLSVAL



47

MODULENAME:
FILE NAME:
PROCESS:

PFILT (Pre-filter)
MLSEX.FOR
FMFAST

PURPOSE: To prefilter the MLS input parameters.

CALLED BY: MLSEX
CALLING SEQUENCE:CALL PFILT
CALLS TO: None

DESCRIPTION:
The Prefilter module uses alpha-beta filters to prefilter the

MLS input parameters (Range, Azimuth, EL1). The IC PF flags are
OR'ed with the ICMLS flag to determine initialization processing.
If the result is true, the respective prefilter is IC'd by setting
both the filtered output value (S_HAT) and the next predicted value
(MLSS_P) equal to the measured value (MLSRAW) and the respective
IC PF flag is cleared. Note that IC PF will be true on the first
and 58th cycles of initialization. If both IC PF and ICMLS (first
cycle only) are true, the filter velocity estimate (MLSS_DHAT) is
also zeroed.

If no initialization is to be performed, processing continues
as follows:

If MLSLSV is true, filter input (TEMP) is the difference
between the measured and predicted (MLSS P) values. If MLSLSV is
false and MLSVAL is true, filter input is the difference between
MLSS P and the prediction from PRINV (MLSS PRED). I.e, the
measured values are selectively replaced by predictions derived
from the complementary filter outputs.

If both MLSLSV and MLSVAL are false, filter input is the
difference between the measured and predicted values (limited to
the maximum value specified by OUTLIR LIM) when the input signal
valid (MLSSV) is true, and zero otherwise.

If PF IC is false, (indicating that the particular filter has
operated less than 58 cycles since initialization), the value of

TEMP is doubled, effectively cutting the filter time constant in

half. This is to cause the filter to converge more rapidly during

the initialization phase. The following equations are then

evaluated:

S HAT = MLSS P + ALPHA TEMP

MLSS DHAT = MLSS DHAT + BETA TEMP

MLSS--P = S HAT + MLSS DHAT DELTAT

Where: ALPHA and BETA are functions of the

filter time constants.

Finally, if MLSVAL is true and MLSLSV is also true, the filter

output for that signal (S_HAT) is set equal to the measured value.

This prevents the prefilter lags from affecting the complementary

filter once that filter is initialized and stable, but retains the

availability of stable prefiltered values for CF initialization and

for those periods when the input signal may be erratic.



48

GLOBAL INPUTS:

GLOBAL OUTPUTS:

MLSRAW, MLSSV, MLSVAL

None



49

MODULE NAME:
FILE NAME:

PROCESS:

XFORM (Coordinate Transformation)
MLSEX.FOR

FMFAST

PURPOSE: To compute the MLS rotation matrix LMB.

CALLED BY: MLSEX

CALLING SEQUENCE: CALL XFORM

CALLS TO: MXV, SCOSD

DESCRIPTION:

This module computes the 3 X 3 transformation matrix necessary
to expand an aircraft body axis vector on the MLS coordinate frame.

It also computes the vector ANT VEC used by XYZIN and PRINV, which

translates the X, Y, Z position from the aircraft antenna position

to the aircraft center of gravity. The following equations are
evaluated:

t C8 Ca S# $8 Ca - C# Ca C_ $8 Ca + S_ Sa f
I i

[LMB] = i -C@ Sa -S# $8 Sa - C# Ca -C_ $8 Sa + S# Ca J
I I
I s8 -s_ c8 -c_ ce I

Where: C8 = cosine(PITCH), S# = sine(ROLL), etc;

a = True Heading - Azimuth bearing + 180

{ANT_VEC} = [LMB] {ANT_POS}

Where: {ANT POS} is the X,Y,Z position of
the MLS receiving antenna relative

to the aircraft center of gravity
(C.G.).

GLOBAL INPUTS: AZ_BRG, CROLL, CTHET, HDGTRU, SROLL, STHET

GLOBAL OUTPUTS: LMB



5O

MODULE NAME :

F ILE NAME :

PROCESS :

XYZIN (R-Az-EI to X-Y-Z)

MLSEX.FOR

FMFAST

PURPOSE: To compute the position of the aircraft in the MLS

coordinate frame.

CALLED BY: MLSEX

CALLING SEQUENCE: CALL XYZIN

CALLS TO: SCOSD, SQRT, TAN

DESCRIPTION:

This module calculates the position of the aircraft center of

gravity (C.G.) in the MLS coordinate system. It derives position

information from one of the following set of sources depending on

the switch ALTREF.

ALTREF = 0) range, azimuth and radio altitude data

i) range, azimuth and elevation 1 data

XYZIN begins calculations when both range and azimuth

prefilters have run at least 58 iterations (PF_IC true), even

though the solution is not used until 115 iterations (PF_CVAL

true). This permits the use of a semi-iterative method.

Position is first calculated at the receiving antenna, then

translated to the aircraft C.G. The following equations are

evaluated:

A _ A

Raz = R + Xdme cos(Az) - Ydme sin(Az)
A

Ya = -Raz sin(Az)

Xa = sqrt( Raz e - Ya 2 - Za2).

Where:

A

R and Az are the prefiltered range

and azimuth signals;

Xdme and Ydme are the position of

the DME relative to the Az antenna;

Raz is computed range to the MLS

azimuth antenna;

Xa and Ya are the X and Y position

of the receiving antenna in the MLS

coordinate system.



51

If ALTREF is equal to zero, the following equation is calculated:

Za = Hrad - Htdc - ANT VEC (3)

Whe re : Hrad is pitch corrected radio altitude;

Htdc is the correction to Hrad to

produce C.G. altitude above the MLS

plane;

ANT VEC(3) is the displacement of
the receiving antenna above the C.G;

Za is the Z coordinate of the

receiving antenna.

Otherwise,
A

Za = tan(EL1) SQRT(( Xa - Xell )2 + ( Ya - Yell )2)

Where: EL1 is the prefiltered Ell signal;

Xell, Yell, Zellg are the XYZ
coordinates of the Eli antenna

relative to the Azimuth antenna;

Za is the Z coordinate of the

receiving antenna.

(all cases) - -
I Xa I

( POS CG } = { ANT VEC ) + I Ya I

I za l
m E

GLOBAL INPUTS: ELI_DEP, H_TDC, PITCH,

Y_DME, X_ELI, Y_ELI, Z_ELIG

RADALT, ROMLS,

GLOBAL OUTPUTS: None

+ Zellg

X_DME,



52

MODULE NAME:

FILE NAME:

PROCESS:

CFILT (Complementary Filter)

MLSEX.FOR

FMFAST

PURPOSE: To operate the MLS complementary filter.

CALLED BY: MLSEX

CALLING SEQUENCE: CALL CFILT

CALLS TO: MXV, VXM

DESCRIPTION:

The CFILT subroutine initializes and operates the MLS third

order Complementary Filter, with operator selectable options as

specified below. The MLS CF integrates accelerations into

velocities and positions, with a complementary correction term

(EX) derived from the position output of XYZIN (POS_CG).

The filter is operated whenever CFRUN is non-zero. Input

accelerations in the MLS coordinate frame (vector ACC) may be

derived from the IRS or from the Body Mounted Accelerometers,

depending on BMAFLG. (BMA accelerations are also selected by

default when the aircraft is moving too slowly for the IRS

accelerations to be valid). BMA accelerations (vector BMACC

computed in module ACCIN) are rotated into the MLS coordinate frame

using the Lambda (LMB) matrix developed by module XFORM.

Acceleration due to gravity is then subtracted from the Z axis.

IRS cross track and along track accelerations are rotated into the

MLS frame using the sine and cosine of runway heading error.

(Vertical acceleration from the IRS is already in the proper

coordinate frame).

Filter initialization occurs when ICCF is set true by CTLBLK.

During initialization, position output is set to POS _CG,

acceleration biases are zeroed, and vertical velocity (VELHAT(3))

is set to HDOT. XDH (VELHAT(1)) and YDH (VELHAT(2)) may be

initialized from MLS prefilter velocity terms or from IRS VN and

VE, depending on the setting of VGS_FLG.

Filter operation begins by updating the previous position

estimate (POSHAT) by the distance moved in one iteration, and

computing the residual term, EX:
A

( Xtp } = ( POSHAT } + dt ({ VELHAT } + ( ACCHAT } dt / 2.)
A

{ EX ) = { POS CG } - { Xtp }

EX is then limited, and a flag (CF LIM XC) set for each

element which exceeded the limit. Module CNTRM keeps a record of

exceedances and causes loss of MLSVAL if any counter reaches 70 out

of the previous 128 iterations.

If IRS accelerations are in use, the acceleration estimate

(ACCHAT) is computed by summing ACC with the bias vector BIASIR.

The bias vector is then updated by adding proportions of the

present and previous values of EX:

{ EXBA } = DK(3) { EX }



53

{ BIASIR } = { BIASIR } - C1 { EXBA } + C2 { EXBAL }

{ EXBAL } = { EXBA }

If BM accelerations are in use, the bias has already been
applied by ACCIN, so ACCHAT is simply set equal to ACC. The bias
vector (BIASBA) is then updated by first rotating EX into the body
axis, then summing as above:

{ EXBA } = DK(3) { EX } [ LMB ]

( BIASBA } = ( BIASBA } - C1 { EXBA } + C2 { EXBAL }

{ EXBAL } = { EXBA }

Processing concludes by computing the velocity (VELHAT) and
position (POSHAT) estimates:

A

{ XDDtp } = { ACCHAT } + DK(2) { EX }
A

{ VELHAT } = { VELHAT ) + CI { XDDtp} - C2 { XDDLST }
A

{ XDDLST } = { XDDtp }
A

{ XDtp } = { VELHAT } + DK(1) { EX }
A

{ POSHAT } = { POSHAT } + CI { XDtp } - C2 { XDLST }
A

{ XDLST } = { XDtp )

GLOBAL INPUTS: ACCHAT, ATKINS, BIASBA, BMAFLG, BMACC, CFRUN,

COSAZB, GSINS, HDDINS, HDOT, LMB, NAV64K, POSHAT, SINAZB,

VE, VEINS, VELHAT, VGS_FLG, VN, VNINS, XTKINS

GLOBAL OUTPUTS: ACCHAT, BIASBA, EX, POSHAT, VELHAT



54

MODULENAME
FILE NAME:
PROCESS:

PRINV (Inverse Computations)
MLSEX.FOR
FMFAST

PURPOSE: TO compute predicted values of the next MLS signal
inputs.

CALLED BY: MLSEX
CALLING SEQUENCE:CALL PRINV
CALLS TO: MXV, VXM

DESCRIPTION:
PRINV computes predicted values for the next set of MLS

measurements based on the present position estimate (POSHAT),
velocity estimate (VELHAT) and the antenna configuration of the
selected runway. These predictions are used in outlier
computations, and to selectively edit the signal inputs to PFILT
whenever the measured signals are determined to be invalid.

First POSHAT is updated by the distance traveled during the
next iteration, then transformed to the receiving antenna location
(Xa, Ya, Za) by summing with the ANT_VEC output of module XFORM.
Slant range to the DME antenna is next computed using the
Pythagorean theorem.

P_ = sqrt ( (Xa - Xdme)2 + (Ya - Ydme)2 + Za 2 ) - ROMLS

Note that the difference in elevation between the DME and Azimuth

antennas is assumed to be insignificant.

The angle transmitters (Az, ELI) define a conical angle. Thus

Azimuth is computed as follows, using the four quadrant arctan.

Azp = atan2( -YAH , sqrt (Xa 2 + Ya 2) )

ELI is computed using the small angle arctan:

ELIp = atan

Za - Zell

sqrt( (Xa - Xell) _ + (Ya - Yell) 2)

- ELI DEP

GLOBAL INPUTS: ELI DEP, POSHAT, ROMLS, VELHAT, X_DME, X_ELI,

Y DME, Y ELI, Z ELIG

GLOBAL OUTPUTS: None



55

MODULENAME:
FI LE NAME:
PROCESS:

HNAVFS (Horizontal/Vertical Navigation, Fast)
HNAVFS.FOR
FMFAST

PURPOSE: To provide fast loop signal selection and integrations
for navigation.

CALLED BY: FMFAST
CALLING SEQUENCE:CALL HNAVFS
CALLS TO: ANGL, ATAN2D, COSD, HNAVB,

RSCON, SCOSD, SIND, SQRT
HNAVML, HNSWIT,

DESCRIPTION:
The horizontal/vertical navigation routine (HNAVFS), together

with its sub-procedures HNAVB, HNAVMLand HNSWIT, computes and/or
selects the position, velocity and acceleration data used by the
guidance and display procedures. A simplified overview of the
navigation system is depicted in figure 5-i. HNAVFSalso maintains
flags and mode words to indicate which source is in use for
navigation.

Processing begins by performing initialization as required.
The Radio Mode flag (FLRM) and local IRS valid flag (INSVAL) are
initialized OFF and, if COLDST is true, NAVFLG, NAV64K, LLINIT,
HDWAIT, TDWAIT and PASS1 are also initialized. TASFPS is then
computed and, if NAV64K is true, the vertical component is
subtracted to form TASGS.

TASGS =
TAS,

sqrt(TASFPS _ - HDOT_) / KTOFPS,

(GS < 64 kts)

(GS >= 64 kts)

TASGS is used for the Air Data mode and also by the BLOW

subroutine. Next, the IRS and Air Data valids, the simulated

airplane flag (FLYFLG), and certain bits in the MLS configuration

word (MCONF) are examined to determine the appropriate source for

velocity and acceleration data.

Air Data or Radio Mode must be engaged if neither FLYFLG nor

INAVV (Inertial Navigation unit Valid) is true. The acceleration

inputs, normally input from the IRS, are derived from the body-

mounted accelerometers by external code (ACCB vector) and assigned

to IDDATK and IDDXTK if bit 5 of MCONF is set. Otherwise, no

acceleration input is available; IDDATK and IDDXTK are zeroed and

NCUVAL is set false. If bit 4 of MCONF is set, HDD is taken from

ACCB, otherwise it continues to be input from HDDINS. In either

case, true heading (HDGTRU) is taken as magnetic heading (COMPASS)

corrected for local variation (MAGVAR), and external procedure

SCOSD is called to compute the sine and cosine of true heading

(SINTH, COSTH).



56

MLS

RCVR
MLSEX

BMACC

(External)

DME #2

DME #3

AUTOTUNE

HNAVFS
HNSWlT

HNAVB HNAVML

[_ ,

ERAD

HNAVSL

l,, TUNPTH I

7 LAT
/.

_ LON

/_. ALT
/.

FAST LOOP
....._L'O'_t56_"

i TUNXTK I

I NAVIGATIONDATA BASE

t
PATH

DEFINITION 1
FM / FC MAX

FIGURE 5-1" RELATIONSHIP BETWEEN HNAVFS AND THE REST OF THE SYSTEM



57

Air Data Mode will be selected if INAVV is false and the Air

Data input is valid (ADVAL = true). The directional velocities are
then calculated as:

EWVAVE = TASGS SINTKA

NSVAVE = TASGS COSTKA.

On the first pass for Air Data Mode, DVN and DVE are initialized as

the difference between the directional velocities and the previous

estimated IDD velocities:

DVN = IDDVN - NSVAVE

DVE = IDDVE - EWVAVE.

Radio Mode is selected by default if there is no valid

airspeed input. No initialization is performed except for the mode

flags FLRM (ON) and FLADM (OFF).

The Simulated Airplane is engaged if FLYFLG is true. The

Simulator (procedure NAVIG) provides its own true heading (SMUHDG),

true airspeed and cross track acceleration (IDDXTK), but no along

track acceleration.

Inertial Mode, naturally, uses IRS derived velocity and

acceleration data. Input variable initialization for some modes is

summarized below:

VARIABLE

SIMULATOR (FLYFLG}

SOURCE

INERTIAL (INAW) AIR DATA (ADVAL}

HDGTRU SMUHDG THDG

NSVAVE TASGS COSTH VNINS

EWVAVE TASGS SINTH VEINS

IDDATK ZERO ATKINS

IDDXTK (set by NAVIG) XTKINS

HDD (set by NAVIG) HDDINS

MAGHDG + MAGVAR

TASGS COSTH

TASGS SINTH

ZERO (or ACCB(1))

ZERO (or ACCB(2))

HDDINS (or ACCB(3))

For both simulated airplane and INS modes, INSVAL is set true

and FLADM is set false. For all modes, the sine and cosine of

HDGTRU (SINTH, COSTH) is computed once the source of HDGTRU has

been determined. For INS mode, additional code exists to extract

VN/VE from GSINS and COSTH/SINTH if the velocity data valid (VELVLD

- set by IOFLL) is false (it was originally thought it might be at

low ground speeds) and bit 6 of MCONF is set, or to extract

IDDATK/IDDXTK from ACCB if the acceleration data valid (ACCVLD) is

false (it is, at low ground speeds), but these options have not

been required and probably should be removed. Also, on the first

pass for INS mode, or following a change in the selected IRS unit

(indicated by the unit field in IRSSTI), DVN and DVE are

initialized as the difference between the directional velocities

and the previous estimated IDD velocities:

DVN = IDDVN - NSVAVE

DVE = IDDVE - EWVAVE.



58

Next, the conditions for the Microwave Landing System (MLS)
mode are evaluated. The MLS data valid flag, MLSVLD, is
initialized as MLSVAL • RUNM. (MLS computations are not performed
if not in RUN mode.) MLS mode is selected by depressing the MLS
bezel button on the navigation display unit. Code in the Displays
MicroVAX sets the sign bit of the DISPST word for one iteration
when the bezel button is depressed. This word is transmitted from
the Displays to the FM/FC MicroVAX via the DATAC, and is used to
set the MLS ENABL Boolean if MLSVLD is true and MLSMODis false, or
clear it if--MLSMOD is true. If the simulator is engaged or if MLS
has not been selected, the mode flag (MLSMOD) is set false.
Otherwise, MLSMODis set true if MLSVLD and MLS ENABL are both
true. If MLSVLD is false, MLSMODand MLS ENABL are both set false.

Sub-procedure HNAVB is called next to calculate the Radio Nav
(IDD) position and velocity data. These are based on the
previously selected raw velocities (NSVAVE, EWVAVE), Earth radii of
curvature (RMP, RNP - computed by procedure ERAD in SLOW), and
either radio navigation data computed by HNAVSLin the SLOWprocess
or the MLS data computed in procedure HNAVML. (See HNAVB and
HNAVMLdiscussion below.)

If MLSVLD is true, sub-procedure HNAVMLis called to calculate
position and velocity data based on the MLS solution. Yet a third
set of data is available from the Global Positioning Satellite
(GPS) system, with validity checks and selection logic performed by
the external procedure GPSPRC. A count (NAVCTR) is kept of
iterations where good radio navigation (R-nav) data is available.
("Good" R-nav data is here defined as a position computation
performed with a circular error of less than 0.3 NM). When NAVCTR
reaches 5000, the navigation valid flag (NAVVLD) is set. (NAVCTR
continues to increment to a maximum value of 6000). If R-nay data
is absent, NAVCTR is decremented and NAVVLD is cleared when NAVCTR
becomes less than 2000. These switch points were chosen as a first
approximation and may not be optimum. NAVVLD is also forced true if
either MLS or GPS is valid and selected (bad idea!).

Finally, sub-procedure HNSWIT is called to evaluate the
operator selection flags and the system validity flags and select
one of the potential data sources for navigation. HNSWIT performs
separate selection logic and maintains separate mode words for
lateral and vertical navigation. In addition, an easy-on is
performed to minimize transients when a mode switch occurs. See
the description of HNSWIT for details.

Once all the required data have been selected, the sines and
cosines of latitude and longitude are derived through calls to the

system SIN and COS functions and groundspeed in knots (GS) and in

feet per second (GSFPS) are derived from the North (VN) and East

(VE) velocities. Then, if the groundspeed equals or exceeds 64

knots, or if both MLSMOD and NAVFLG (GS > 4) are set, the track

angle (TK), the sine and cosine of track angle (SINTKA, COSTKA) and

the flight path angle (GAMMA) are calculated from HDCF, VN, VE and

GS. Functionally,

SINTKA = VE / GS



59

COSTKA= VN / GS

TK = atan2 (VE, VN)

GAMMA = (HDCF / GSFPS) (180 / pi)

Otherwise, the track angle, and the sine and cosine of the track

angle, are set equal to the true heading, and sine and cosine of

true heading (as they were set during initial mode determination)

and GAMMA is set to zero.

Unconditionally, the drift angle and magnetic track angle are

calculated through calls to external procedure ANGL. Then, if the

groundspeed is below 4 knots, both the navigation mode flag

(NAVFLG) and the 64 knot flag (NAV64K) are set false, and the

ground speed references (GS and GSFPS) are limited to a minimum of

one knot and the corresponding value in feet per second,

respectively. This limit protects against subsequent division by

zero. If the groundspeed exceeds four knots, NAVFLG is set true.

At 64 knots, NAV64K is set true and the Lat/Lon initialization

flag, LLINIT, is also set true to indicate that the latitude and

longitude variables have been initialized.

GLOBAL INPUTS: ACCB, ACCVLD, ADVAL, ATKINS, COLDST, COMPASS,

DISPST, DPE, DPN, EWVAVE, FLADM, FLYFLG, GPLND, GPNAV,

GPNAVV, GSINS, HDCF, HDOT, HDDINS, IC, INAVV, IRSSTI,

LAT, LON, MAGVAR, MCONF, MLSMOD, MLSSLI, MLSVAL, NAV64K,

NAVCTR, RUNM, SMUHDG, TAS, THDG, VE, VEINS, VELVLD, VN,

VNINS, XTKINS

GLOBAL OUTPUTS: CLAT, CLON, COSTH, DFTANG, DYE, DVN, FLADM, FLRM,

GAMMA, GS, GSFPS, GSFPS2, HDD, HDGTRU, IDDATK, IDDXTK,

LLINIT, MLSMOD, MLSVLD, NAV64K, NAVCTR, NAVVLD, NAVFLG,

NCUVAL, SINTH, SLAT, SLON, TASFPS, TASGS, TK, TKMAG



6O

MODULENAME:
FILE NAME:
PROCESS:

HNAVML (Horizontal/Vertical Navigation, MLS)
HNAVFS.FOR
FMFAST

PURPOSE: To provide Navigation position and velocities from the
Microwave Landing System (MLS) solution.

CALLED BY: HNAVFS
CALLING SEQUENCE: CALL HNAVML
CALLS TO: COSD, SIND

DESCRIPTION:
This routine calculates navigation velocities and position

based on MLS data inputs. It is called only when the MLS solution
is valid. Processing begins by computing local copies of the
lengths of a degree of latitude (DLTFT) and longitude (DLNFT) and
the radii of curvature, LRM and LRL. It evaluates the same
equations as are used by procedure EKAD, but bases them on average
latitude (LATA) between the aircraft (LAT) and the MLS azimuth site
(LAT MLS) and the WGS-84 altitude of the MLS plane at the EL-I site
(ZOMLS + WGSMSL). It then rotates the MLS X and Y velocities (in
• ps) to North and East velocities (in knots), as follows:

MLSVN = -(VELHAT I cos (AZ_BRG) + VELHAT2 sin(AZ_BRG)) / KTOFPS

MLSVE = - (VELHAT I sin (AZ_BRG) - VELHAT 2 cos (AZ_BRG)) / KTOFPS

Delta latitude and longitude are then computed based on MLS X

and Y position and DLTFT / DLNFT:

DLAT = - (POSHAT I cos (AZ_BRG) + POSHAT 2 sin (AZ_BRG))

DLON = -(POSHAT I sin(AZ_BRG) - POSHAT 2 cos (AZ_BRG))

/ DLTFT

/ DLNFT

The MLS latitude and longitude estimate are computed by

summing DLAT and DLON with the location of the MLS Azimuth antenna.

MLSLAT = LAT MLS + DLAT

MLSLON = LON MLS + DLON

Finally, the Earth curvature (ZDIF) between the aircraft and

the MLS EL1 site is computed and used to convert MLS Z and Z-dot

(relative to the MLS plane) to altitude and altitude rate relative

to the Earth.

TI = (POSHAT(1) - X ELI) 2

T2 = (POSHAT(2) - Y--EL1)2

TEMP = (TI + T2) / (LRM + LRN) * NMTFT

"TEMP" is filtered into ZDIF using a one second time constant,

producing both a smoothed altitude correction and an estimate of

the altitude rate error, ZDIFD.

ZDIFD = TEMP - ZDIF

ZDIF = TEMP - KTISEC * ZDIFD



61

MLSALT and MLSHDT are then computed as follows:

MLSALT = POSHAT3 + Z0MLS + ZDIF

MLSHDT = VELHAT_ + ZDIFD.

These MLS derived outputs are used for comparison purposes,

and are conditionally output for navigation purposes by procedure

HNSWIT.

GLOBAL INPUTS: COSAZB, LAT, LAT MLS, LON_MLS, POSHAT, SINAZB,

VELHAT, WGSMSL, X_EL1, Y_EL1, ZHAT, ZDIF, ZOMLS

GLOBAL OUTPUTS: MLSALT, MLSLAT, MLSLON, ZDIF



62

MODULE NAME :

F ILE NAME :

PROCESS :

HNAVB (Horizontal/Vertical

Baro)

HNAVFS.FOR

FMFAST

Navigation, plus

PURPOSE: To provide Radio Navigation positions and velocities and

the inertially smoothed, Baro-corrected altitude and

altitude rate.

CALLED BY: HNAVFS

CALLING SEQUENCE: CALL HNAVB

CALLS TO: SQRT

DESCRIPTION:

This procedure inputs the navigation position errors (DPN,

DPE) computed by slow loop navigation (HNAVSL) or by the MLS

navigation module (HNAVML) within this compilation unit, the Earth

radii (RMP, RNP) calculated by procedure ERAD in the SLOW process

and computes the corrected positions and velocities using a second

order filter. Although the names (IDDxxx) imply Inertial Dual-Dme

(inertial velocities integrated into dual DME corrected positions),

the North and East velocity references may be either inertial, air

data or none (Radio-only mode) as selected by HNAVFS. Similarly,

the position reference may be based on DME's or on ILS or MLS

landing aids as selected by HNAVSL or HNAVML. The filter gains

(KIP, K2P) are set by HNAVSL, and adjust the filter time constant

(LAT/LON, VN/VE) to 20, 30 or 50 seconds according to the selected

velocity and position references. See the documentation for HNAVSL

for details. The altitude filter is a third order filter driven by

vertical acceleration (HDD) and baro altitude (HBARO). The time

constant is fixed at 20 seconds. It has nothing to do with DME's.

If PASS1 is true (indicating that position information is

available from HNAVML) and if MLSMOD is true or MLSSLI and MLSVLD

are both true, the radio navigation gains and error terms are

replaced by terms calculated from the MLS position estimates

computed by procedure HNAVML.

DPN = (MLSLAT - IDDLAT) * DTOR * RMP

DPE = (MLSLON - IDDLON) * DTOR * RNP

Where: MLSLAT, MLSLON is the position calculated by HNAVML;

RMP, RNP are the North and East radii of curvature

(in NM) calculated by ERAD; and

DTOR is the degree to radian conversion factor.

If MLSVLD is false, PASS1 is cleared. If PASS1 was true on

the previous pass, DPN and DPE are zeroed to prevent them from

being integrated further.

If FLYFLG is false and either NAVFLG is true (indicating that

groundspeed is greater than four knots) or MLSMOD and PASS1 are

both true, DVN and DVE are integrated from DPN and DPE to correct

for position errors determined in the slow loop. They are then

summed with the velocities NSVAVE and EWVAVE (computed in mainline



63

code during initial mode determination) to produce the North and

East velocity estimates, IDDVN and IDDVE. These velocities are

then converted to earth coordinates and integrated to form the

inertially derived latitude (IDDLAT) and longitude (IDDLON). The

following equations are evaluated:

DVN =

IDDVN =

IDDLAT =

DVN + K2P DPN

NSVAVE + DVN

IDDLAT + (IDDVN DTS + KIP DPN) / RMP

DVE =

IDDVE =

IDDLON =

DVE + K2P DPE

EWVAVE + DVE

IDDLON + (IDDVE DTS + KIP DPE) / RNP

Where: KIP, K2P are the gains selected by HNAVSL,

DTS is a conversion factor from knots to degrees

per 50 msec iteration and

RMP, RNP are radii as described above.

If the JUMP flag (used for test purposes) is true, an error is

introduced into the navigation output equal in magnitude and

opposite in sign to the present guidance cross track error (XTK).

The JUMP flag is then cleared.

IDDLAT = IDDLAT + sin(TK) XTK / DLATFT

IDDLON = IDDLON + sin(TK) XTK / DLONFT

In the event that the above conditions of NAVFLG, MLSMOD and

FLYFLG do not hold, the velocity estimates are set equal to NSVAVE

and EWVAVE, DVN and DVE are zeroed and the integration of

velocities into position is bypassed. (This is an error in that

FLYFLG should only bypass the integration of position error into

delta velocity, not the integration of velocity into position).

Then, if the IRS signals are valid and LLINIT is false (indicating

Lat/Lon not yet initialized by navigation or pilot input), the raw

IRS latitude and longitude are set into IDDLAT and IDDLON. Also in

this section, the altitude error integrator (DVH) is zeroed and, if

FLYFLG is false, ALT and HDOT are initialized to HBARO and HDOTB,

respectively.

The final section of HNAVB computes the inertially smoothed,

baro-corrected altitude (IDDALT). If the simulated airplane is

engaged (FLYFLG true), HDOT is set equal to HDCF (set by NAVIG),

and operation of the altitude filter is bypassed, as HDDOT and ALT

are also set directly by NAVIG. Otherwise, the vertical

acceleration, velocity, and altitude are computed through a series

of integrations. The vertical acceleration bias, DVH, is formed by

integrating DELH, the difference between HBARO and ALT. Note that

DELH is limited to 50 feet to prevent data dropouts from disturbing

the filter. If a dropout occurs, the error counter (HBECTR) is

also incremented. DVH is gained by XKA and summed with HDD

(vertical acceleration) to form HDDOT, the vertical acceleration

estimate in ft/sec/sec. Then, HDOT, the vertical velocity

estimate, is formed by integrating the sum of HDDOT and XKV times



64

DELH. Finally, the inertially smoothed altitude (ALT) is computed

by integrating the sum of HDOT and KD times DELH.

The final calculations produce IDDALT, the inertially smoothed

altitude estimate, by applying a filtered, rate limited, barometric

correction (FBARC) to ALT. The baro altitude correction in feet

(BARSFT) is computed in the SLOW process whenever the pilot enters

a new baroset via the CDU. FBARC is derived by taking the

difference between BARSFT and the current value of FBARC, limiting

that delta to a I0 foot maximum, and integrating. The rate limit

is only applied when airborne (SQUAT is false), and serves to limit

the rate of change of altitude due to baroset entries to 10 feet

per second.

GLOBAL INPUTS: ALT, BARSFT, DISPST, DLATFT, DLONFT, DPE, DPN,

DVE, DVN, FLYFLG, HBARO, HBECTR, HDCF, HDD, HDOT, HDOTB,

IDDLAT, IDDLON, JUMP, KIP, K2P, LATINS, LLINIT, LONINS,

MCONF, MLSLAT, MLSLON, MLSMOD, MLSSLI, MLSVLD, NAVFLG,

RMP, RNP, SQUAT, XTK

GLOBAL OUTPUTS: ALT, DPE, DPN, DVE, DVN, HBECTR, HDDOT, HDOT,

IDDALT, IDDLAT, IDDLON, MLSC, MLSMOD



65

MODULENAME:

FILE NAME:
PROCESS:

HNSWIT
Switching)
HNAVFS.FOR
FMFAST

(Horizontal/Vertical Navigation

PURPOSE: To select and easy-on the navigation position, velocity
and acceleration outputs.

CALLED BY: HNAVFS
CALLING SEQUENCE:CALL HNSWIT
CALLS TO: SQRT

DESCRIPTION:
This procedure evaluates the selected navigation mode (IXX,

IDD, GPS, or MLS) and selects the appropriate source data for
output as VN, VE, HDCF, LAT, LON and ALTCOR. The selected mode is
indicated by NAVMODfor LAT/LON and NVVMODfor altitude. Values
are: 0 = IXX, 1 = IDD (NAVMODonly), 2 = GPS, 3 = MLS. An easy-on
is provided for the velocity switch and also for the altitude

switch on NVVMOD. No easy-on is provided for the LAT/LON switch,

as this is handled by the lateral control law.

Processing begins by setting the PVM ENABL switch, which

determines whether MLS or GPS altitude is to be used. Basically,

IDDALT and HDOT will be the selected output except on final

approach, when MLS or GPS derived altitude may be selected to

ensure that 3D guidance will guide the aircraft onto the

glideslope.

PVM ENABL = LOCE • (GSENG + (VERPTH • (PFPA <= -2.)))

IDDALT and HDOT are then preselected for output and processing

continues by checking the modes in priority sequence. If MLSMOD is

true, MLS derived position and velocity outputs will be used. A

check is made for first pass conditions. If NAVMOD is not equal to

3, some other mode was active on the previous pass. DELVN and

DELVE, used in the velocity easy-on, are set to the difference

between the previous output velocities and the MLS derived

velocities and NAVMOD is set to 3.

DELVN = VN - MLSVN

DELVE = VE - MLSVE

The outputs of the MLS complementary filter (POSHAT, VELHAT

and ACCHAT) are then loaded into the specific item names (XHAT...

ZDDH) using the overlay vector PVHAT, where PVHAT(1) is

equivalenced to XHAT. The effect is:

[ POSHAT ] [ VELHAT ] [ ACCHAT ]

I I I
V V V

[ XHAT, YHAT, ZHAT ] [ XDH, YDH, ZDH ] [ XDDH, YDDH, ZDDH ]

The along-track (VGSDOT) and across-track (XTACC) acceleration



66

outputs are then computed as follows:

GSFPS = sqrt( XDH2 + YDH2)
VGSDOT = ( XDH XDDH + YDH YDDH ) / GSFPS

XTACC = ( YDH XDDH - XDH YDDH ) / GSFPS

MLSVN and MLSVE are then loaded into SELVN and SELVE,

respectively. These intermediate variables are used in the easy-on

logic, ultimately appearing as VN and VE. MLSLAT and MLSLON are

next set into LAT and LON and the vertical guidance mode logic is

executed. If MLSSV(4) and PVM ENABL are both true, MLSALT and

MLSHDT are loaded into the intermediate variables SELPH and SELVH,

respectively, to ultimately appear as ALTCOR and HDCF. MLSSV(4)

indicates that the MLS DME is in precision mode (which guarantees

best altitude accuracy) and PVM ENABL is discussed above. If

NVVMOD is not equal to 3, DELVH and DELPH are initialized and

NVVMOD is set to 3.

DELVH = HDCF - MLSHDT

DELPH = ALTCOR - MLSALT

If the conditions for a NVVMOD of 3 are not satisfied, the

correct outputs are HDOT and IDDALT, for a NVVMOD of 0. If NVVMOD

is not 0, a reversion from either MLS or GPS is indicated. DELVH

and DELPH are initialized and NVVMOD is set to 0.

DELVH = HDCF - HDOT

DELPH = ALTCOR - IDDALT

If MLSMOD is false, then the mode is GPS or IDD. In either

case, VGSDOT and XTACC are loaded from IDDATK and IDDXTK,

respectively. If GPNAV is true, indicating that GPS navigation has

been selected on the CDU, HYBLAT and HYBLON will be used for LAT

and LON. Use of GPS velocities depends on the validity checks

performed by GPSPRC. If GPSSEL is 0 (indicating bad status), the

IRS velocities, VNINS and VEINS, are loaded into SELVN and SELVE.

Otherwise, HYBVN and HYBVE are used. If NAVMOD was not previously

2, or if there is a change in the GPS validity as indicated by

GPSSEL, then DELVN and DELVE are initialized:

If GPSSEL = 0,

DELVN = VN - VNINS

DELVE = VE - VEINS

Else

DELVN = VN - HYBVN

DELVE = VE - HYBVE

In either case, NAVMOD is set to 2 and a check is made for use of

GPS vertical guidance. If GPLNDV (indicating that GPS vertical

accuracy is sufficient for autoland) and PVM ENABL are both true,

HYBALT is set into SELPH. If NVVMOD was not previously 2, DELPH is

set to ALTCOR minus HYBALT, and NVVMOD is set to 2. HDOT continues

to be the selected altitude rate reference.



67

If neither MLS nor GPS guidance is selected, the position
reference is IDDLAT, IDDLON and IDDALT, but a check still needs to
be made for the velocity reference. If radio navigation updates
are not available for a period of time, a large position error can
accrue. The process of correcting this position error can
introduce significant velocity error. The NAVVLD flag maintained
by HNAVFS indicates that R-nav updates are available and the
solution has converged sufficiently that the IDD velocities are
accurate. Also, if a change in NAVMODoccurred on this pass, the
delta velocities are initialized:

if NAVVLD then
SELVN = IDDVN
SELVE = IDDVE
if NAVMOD_ 1 then

DELVN = VN - IDDVN
DELVE = VE - IDDVE
NAVMOD= 1

endif
else

SELVN = NSVAVE

SELVE = EWVAVE

if NAVMOD _ 0 then

DELVN = VN - NSVAVE

DELVE = VE - EWVAVE

NAVMOD = 0

endif

endif

NVVMOD is also checked to see if a reversion to mode 0

occurred on this pass, and the delta altitude and altitude rate is

initialized if necessary:

if NVVMOD _ 0 then

DELVH = HDCF - HDOT

DELPH = ALTCOR - IDDALT

NVVMOD = 0

endif

Finally, a check is made to see if a change of NAVMOD occurred

on this iteration (NAVMOD _ PNVMOD), and the lateral velocity easy-

on timer (TDWAIT) is initialized to 1.0 if so. Then if TDWAIT is

greater than zero it is decremented by .005 (i / i0 seconds times

20 Hertz), and TDWAIT times DELVN and DELVE is summed with SELVN

and SELVE to produce the output velocities VN and VE. Otherwise

SELVN and SELVE are simply loaded into VN and VE and TDWAIT is
zeroed.

Identical processing is then performed for NVVMOD, with

HDWAIT, DELVH and DELPH controlling the easy-on of SELVH and SELPH.

GLOBAL INPUTS: ALTCOR, GPLNDV, GPNAV, GPSSEL, GSENG, HDCF, HDD,

HDOT, HYBALT, HYBLAT, HYBLON, HYBVE, HYBVN, IDDALT,



68

IDDATK, IDDLAT, IDDLON, IDDXTK, INSVAL, JUMP, KIP, K2P,

LATINS, LLINIT, LOCE, LONINS, MCONF, MLSALT, MLSLAT,

MLSLON, MLSMOD, MLSSLI, MLSSV, MLSVLD, NAVMOD, NVVMOD,
PFPA, POSHAT, RUNM, VE, VEINS, VERPTH, VN, VNINS

GLOBAL OUTPUTS: ALTCOR, GSFPS, HDCF, LAT, LON, PVHAT, VE, VGSDOT,

VN, XDDH, XDH, XHAT, XTACC, YDDH, YDH, YHAT, ZDDH, ZDH,
ZHAT



69

MODULE NAME:

FILE NAME:

PROCESS:

HVGUID (Horizontal/Vertical Guidance)
HVGUID.FOR

FMFAST

PURPOSE: To provide the horizontal/vertical path errors and the

speed commands for automatic aircraft guidance in
2D/3D/4D modes.

CALLED BY: FMFAST

CALLING SEQUENCE: CALL HVGUID

CALLS TO: AAA, DTGI, GD3D, HVG2, HVG6, LEGSW, TRALCBA,

UVC, VDP

DESCRIPTION:

The Horizontal/Vertical guidance equations, implemented in

procedure HVGUID and its attendant subprocedures, compute the

deviations between the 2, 3, or 4D path defined by the path

definition equations and the present aircraft speed and position

computed by the navigation equations. Its primary outputs are:

crosstrack error (XTK), desired track (DSRTK) and track error (TKE)

used by the lateral steering equations, and altitude error (HER),

desired altitude rate (HDTC) and flight path angle (PFPA) used by

the vertical steering equations. The desired speed on the path

(SDC) and the required along track acceleration (SDD) used by

TIMPTH (4D) and speed modes are also computed here, although it

would be more logical to compute them in TGUID. A detailed

theoretical discussion of the algorithms implemented will be found

in Appendix B, Horizontal / Vertical Guidance Computations. The

discussion here will concentrate on implementation methodology.

Processing begins by checking for initialization conditions.

If COLDST is set, indicating the first few iterations after power

up, a few statements are executed which are, in fact, superfluous.

Subsequently, the _2D guidance possible' flag (GUID2D) is checked.

If it is false, control passes to the bottom of the HVGUID

subroutine where certain lateral axis flags and variables are

zeroed, and subroutine GD3D is called to initialize variables for

the vertical axis. In every case, the last step is to set the

present value of GUID2D into GD2DP.

If GUID2D is true, a check is made to see if ground speed is

less than 64 knots (NAV64K = false) or if GUID2D was false on the

previous pass (GD2DP = false). If either case prevails, further

initialization is performed. The 2D guidance pointer (PTR2D) is

limited to a minimum of two (any waypoint but the first may be

selected as the _to' waypoint), and the 4D guidance pointer (PTR4D)

and the _to waypoint' pointer (TOWPT) are set equal to PTR2D. The

HVG first pass flag (HVGPI) is then cleared, which will cause some

additional initialization to occur on the next iteration. Next,

the unit normal vector (UI2C) is loaded from the guidance buffer

(WPT ACT.NMV). This needs to be done here as it will not otherwise

be done on a straight leg segment until PTR2D is updated. The

lateral guidance variables are then initialized and GD3D is called

to initialize the vertical guidance outputs. (Note: LATSTR should

not be set here as it is no longer computed in this module).



70

As soon as NAV64K and GD2DP are both true (this will be the
next iteration, assuming the path was entered or modified in
flight), normal guidance processing begins by computing the
aircraft position unit vector (P0).

P_0 = -SLON * CLAT

CLON • CLATJ

Where: SLAT = sin(Latitude), CLON = cos(Longitude), etc.

The abeam point unit vector is then computed by subtracting the

component of P0 which is perpendicular to the path segment (i.e,
parallel to the path normal vector) from P0 as follows:

TMP EC P% - (F0 • NMV) • NAy

TMPVEC will be loaded into POP by subroutine HVG2 when on a

straight leg. POP locates the point on the great circle path abeam

of present aircraft position. It is equal to P0 if the A/C is on

the path.

When in a turn, both POP and UI2C will be recomputed in

subroutine AAA for turn guidance, but they are needed here in every
event to compute the westward pointing vector, MHAT.

0 ]TMPVEC (3)
-TMPVEC (2 )

MHAT is used in subroutine TRALCBA to compute the desired track.

Next the HVG first pass flag (HVGPI) is checked. If set, the

_in a DME-arc turn' flag (DMA) is cleared (LEGSW will set the PDMA

flag equal to it) and LEGSW is called to do the normal path segment

initialization. The leg distance to go (DTOGO) is then set equal

to DTG (computed by LEGSW) and HVGPI is set true, indicating

initialization complete. HVGUID then exits, leaving the

calculation of the actual guidance variables to the next pass.

Note that this sequence requires three iterations after GUID2D is

set to produce guidance inputs to the steering command modules,

which causes problems there. With reorganization it should be

possible to produce usable outputs on the very first iteration,
thus allowing the removal of _fix-it' code in LATCMD and VERCMD.

The remaining processing varies according to whether the path

segment is a curved (TURN = true) or straight leg. Note that the

_in turn' (TURN) and _2nd half of turn' (TEND) flags serve a dual

purpose. When transitioning from one straight path segment to

another, TURN and TEND are set on consecutive iterations, then

cleared on the third to mechanize the 2/3/4 -D pointer update

logic. When actually guiding around a turn, TURN is set when

entering the turn, TEND is set and PTR4D is updated when halfway



71

through the turn, and both are cleared and PTR2D is updated when
the end of the turn is reached. In the special case of exiting
from a DME-arc turn (which has a waypoint on each end as opposed to
one in the middle), TURN is set again on the very next iteration to

mechanize the transition to the next straight leg. If GUID3D is

true, PTR3D is updated at least 300 feet before entering the turn

(by subroutine HVG6). The actual distance depends on the degree

(if any) of flight path angle change between the path segments. If

GUID3D is false, PTR3D is synchronized to PTR4D by subroutine GD3D.

If TURN is false the following processing occurs:

Distance to go on a straight leg (DTG) is checked against the

distance from the next waypoint back to the tangent point (DTT, the

beginning of a (non-DME) turn), or simply to zero if approaching a

DME turn. If DTG is less than DTT or if DTG is less than the

distance that will be traveled in the next iteration (GSFPS *

DELTAT) and if PTR2D is less than the total number of waypoints on

the path (ACTCNT), TURN is set. This will initiate a path segment

update by causing the _TURN is true' logic to be exercised below.

However if PTR2D equals ACTCNT, we have reached the end of the

path. GUID- 2D, 3D and 4D are cleared and PTR2D is reset to 1 (a

hint to other modules that path end has been reached). If it is

not time to set TURN, HVG2 is called to compute DTG and DTOGO and

TRALCBA is called to compute the lateral guidance errors and the

speed commands.

If TURN is true the following processing occurs:

If PDMA is false, subroutine AAA is called to calculate the

vectors required for turn guidance and the _turn angle made good'

(AMG). (Note: PDMA is the value of DMA on the previous leg, set

by LEGSW during path leg initialization. If it is true with TURN

true, we are in the process of doing the second pointer update at

the end of a DME turn, which has nothing to do with _turn'

guidance. MAGTA and AMG will both be zero in this case). If TEND

is false, AMG is checked to see if it is time to set it. If AMG is

greater than or equal to 1/2 the magnitude of the turn angle

(MAGTA), TEND is set, distance made good (DMG, used by time (4D)

guidance) is increased by the center-to-center distance from the

previous waypoint to the center of this turn (WPT_ACT.CCD) and

PTR4D is incremented. If PTR4D then equals HLD PTR, we are at the

last waypoint of a holding pattern. If EXHOLD is false, we want to

repeat it, so PTR4D is decremented by four and PTR3D is set equal

to PTR4D. As a holding pattern is flown with a constant altitude

and speed, but the initial inbound leg to the holding pattern may

have varied both, the ground speed in the _from' waypoint

(WPT ACT(PTR4D-I).GS) is set equal to that in the _to' waypoint and

the flight path angle in the _to' waypoint (WPT ACT(PTR3D).FPA) is

set to zero. Regardless of the state of TEND, DTGI is next called

to compute distance to go (DTOGO - see the discussion under DTGI)

and TRALCBA is called to compute the lateral guidance and speed

commands.



72

If TEND was initially true (already in the second half of the
turn or second step of a leg update sequence), then AMGis checked
again. If AMG is less than MAGTA, we are still in the turn, and
DTGI and TRALCBA are called as above. Otherwise, PTR2D is
incremented. If PTR2D now equals HLD PTR and EXHOLD is false,
PTR2D is decremented by four as was done above for PTR4D. UI2C is
then loaded from the guidance buffer. (Note: the above sequence
causes problems when repeating a holding pattern which is not
parallel to the inbound leg. UI2C should be loaded before backing
up PTR2D). LEGSW is then called to initialize the invariant
parameters for the next leg, and the flag DOHVG6 is cleared to
block HVG6 for one iteration (see below).

HVGUID processing completes by calling HVG6 if 3D processing
is possible (GUID3D and DOHVG6true with PDMAfalse). (The DOHVG6
flag was added to prevent a spurious altitude error on exiting a
DMA turn.) HVG6 computes the vertical guidance parameters, HER,
HDTC and PFPA, and updates PTR3D. DOHVG6is set on return. If
GUID3D is false, GD3D is called to maintain the vertical guidance
variables in the IC state and keep PTR3D synchronized with PTR4D.

GLOBAL INPUTS: ACTCNT, AMG, CLAT, CLON, COLDST, DMG, DTG,
EXHOLD, GSFPS, GUID2D, GUID3D, NAV64K, PTR2D, PTR4D,
SLAT, SLON, TEND, TURN, WPT_ACT

GLOBAL OUTPUTS: ALCBA, ALCFLG, DMG, DTOGO,
GUID4D, LATSTR, PTR2D, PTR3D, PTR4D,
TURN, WPT_ACT, XTK

GUID2D, GUID3D,
TEND, TKE, TOWPT,



73

MODULENAME:
FILE NAME:
PROCESS:

LEGSW (Leg Switching)
HVGUID.FOR
FMFAST

PURPOSE: Set up invariant parameters for the next leg of the path.

CALLED BY: HVGUID
CALLING SEQUENCE:CALL LEGSW
CALLS TO: ANGL

DESCRIPTION:
The TURN and TEND flags are cleared (completing the leg update

sequence), ALCFLG and ALCBA are cleared (if required on the next
leg, they will be recomputed by TRALCBA) and the angle-made-good
(AMG) is cleared. Parameters are then loaded from the guidance
buffer entry pointed to by PTR2D as described below:

If DMA is false, turn angle (TA) is set to WPTACT(i).ANGLE
and DTG is set to the distance from the end of the previous turn to
the next waypoint ( WPTACT(i).PPD - WPTACT(i - I).DTT ). If DMA
is true, these parameters refer to the DMEturn being exiting, not
an upcoming turn, and TA and DTG are set to zero. The sign
(SIGNTA) and magnitude (MAGTA) of TA are then computed, PDMAis set
to DMAand the DMA flag is loaded from WPTACT(i).DMA. The radius
of turn (RTN) is then loaded from WPTACT(i).RAD and the half-arc
distance (AO2) is loaded from WPT ACT_i).ARC2.

GLOBAL INPUTS: PTR2D, WPTACT

GLOBAL OUTPUTS: ALCBA, ALCFLG, AMG, DTG, RTN, TEND, TURN



74

MODULENAME:
FI LE NAME:
PROCESS:

GD3D (3D Guidance Initialization)
HVGUID.FOR
FMFAST

PURPOSE: Initialize 3D guidance variables.

CALLED BY: HVGUID
CALLING SEQUENCE: CALL GD3D
CALLS TO: None

DESCRIPTION:
GD3D is called when GUID3D, GD2DP, or HVGPI is false. It sets

VERSTR, PFPA, HER, and DMGto zero, sets HDTC to present vertical
speed (HDCF), synchronizes PTR3D to PTR4D and sets the nominal leg
flight path angle (FPA) to WPT ACT.FPA (this is only significant on
the last call before setting HVGPI). FPA and HDTC will be required
by HVG6 to ensure a smooth transition in vertical guidance should
GUID3D become true, and PFPA is referenced by external modules
without reference to the state of GUID3D. VERSTRshould not be set
here as it is no longer computed by HVGUID.

GLOBAL INPUTS:

GLOBAL OUTPUTS:

HDCF, PTR4D, WPTACT

DMG, FPA, HDTC, HER, PFPA, PTR3D, VERSTR



75

MODULE NAME:

FILE NAME:

PROCESS:

AAA (Turn Vector Processing)
HVGUID.FOR

FMFAST

PURPOSE : Compute the unit normal and abeam point vectors used for

guidance when in a turn.

CALLED BY: HVGUID

CALLING SEQUENCE: CALL AAA

CALLS TO: ATAN2D, UVC, VCP, VDP

DESCRIPTION:

The _abeam point' when in a turn is simply the center of the

turn, so P0P is loaded from WPT_ACT.TCV. (This must be done every

iteration as HVGUID mainline processing continues to compute P0P as

for straight segment processing). UI2C, the unit vector normal to

the plane defined by the airplane position vector (P0) and POP, is

then computed by subtracting from the difference between P0 and

POP, the component of that vector in the turn center vector

direction:

UI_C = (((P0 - POP) - (((/0 - POP) POP) • POP)) • SIGNTA

Where: SIGNTA is positive for a right turn.

UVC is then called to ensure that the result is a unit vector.

The angle made good (AMG) is calculated as follows:

AMG = atan(sin(A), cos(A))

Where:
sin (A) = (UI_C X N_V)

cos (A) - UI_2C • N_V

P_)P

N6YV is the unit vector normal to the inbound leg.

Finally, AMG is corrected according to its magnitude and the
turn direction to make sure that it remains >= zero and <= 330

degrees (the maximum permissible turn magnitude). Also, if the

aircraft is sufficiently off course as t_ cross on the wrong side

of the turn center (indicated by XTK times the sign of the turn

angle being greater than the turn radius), AMG is set equal to

MAGTA, causing immediate update to the next path leg.

GLOBAL INPUTS: RTN, WPT_ACT, XTK
4

GLOBAL OUTPUTS: AMG



76

MODULE NAME:

FILE NAME:

PROCESS:

DTGI (Distance-to-go (Turn) Calculations)

HVGUID.FOR

FMFAST

PURPOSE: Calculate the abeam distance,

position in and type of turn.

DTOGO, according to

CALLED BY: HVGUID

CALLING SEQUENCE: CALL DTGI

CALLS TO: None

DESCRIPTION:

DTGI calculates the distance-to-go (DTOGO) when in a turn.

When in a DME-arc turn, it is simply the distance around the turn

(CCD) minus the arc distance made good (AMG). For non-DME turns,

it is the distance from the beginning to the center of the turn

(A02) minus the arc distance made good when in the first half of

the turn, and the distance to the center of the next turn (CCD to

the next waypoint is added) when in the second half of a turn.

GLOBAL INPUTS: AMG, PTR2D, RTN, TEND, WPT_ACT

GLOBAL OUTPUTS: DTOGO



77

MODULENAME:
FILE NAME:
PROCESS:

HVG2 (Distance-to-go (Straight Leg) Calculations)
HVGUID.FOR
FMFAST

PURPOSE: Compute DTG and DTOGOwhen on a straight leg.

CALLED BY: HVGUID
CALLING SEQUENCE:CALL HVG2
CALLS TO: ATAN2, VCP, VDP

DESCRIPTION:
HVG2 is called when on a straight leg. It loads the abeam

point vector (POP) from TMPVEC (computed by HVGUID mainline code)
and computes two measures of _distance to go'. DTG is the distance
from the abeam point to the next waypoint (WPV), computed as:

DTG = Re * atan(sin(A), cos(A))

Where: Re is the local Earth radius in feet (RADFT)

sin(A) = (POP X W_V) UI2C

cos(A) - P0P . W_V

and

POP is the abeam point vector

W@V is waypoint vector of the to waypoint

UI_C is the unit normal vector (= WPT ACT.NMV

when on a straight leg)

If the _to' waypoint is the inbound waypoint of a DME-arc

turn, or if there is no turn at the next waypoint, then DTOGO =

DTG. Otherwise, DTOGO is the distance to the center of the next

turn, computed as:

DTOGO = DTG - DTT + A02

Where: DTT is the distance from the next waypoint back

to the tangent point of the turn;

AO2 is one half the distance around the turn.

A02 is loaded from the guidance buffers by LEGSW.

GLOBAL INPUTS: RADFT, WPT ACT

GLOBAL OUTPUTS: DTG, DTOGO



78

MODULENAME:
FI LE NAME:
PROCESS:

TRALCBA (Primary Lateral Guidance Computations)
HVGUID.FOR
FMFAST

PURPOSE: Calculate NOMBA, XTK, DSRTK and TKE. Ground speed mode
SDC and SDD are also calculated here.

CALLED BY: HVGUID

CALLING SEQUENCE: CALL TRALCBA

CALLS TO: ANGL, ATAN2, ATAN2D, SCOSD, SIND, VCP, VDP

DESCRIPTION:

The nominal bank angle (NOMBA) required to compensate

lateral acceleration around a turn is computed as:

for

NOMBA = arctan (GSFPS 2 / (g * RTN) )

Where: g is the nominal acceleration due to gravity

RTN is the radius of the turn in feet

and If g * RTN is < GSFPS 2, NOMBA is set

to 45 degrees.

Then RALC, the distance before the turn to apply the nominal bank

angle in order to minimize tracking error, is calculated as

RALC = GSFPS * NOMBA / 4

Where: 4 degrees per second is the

lateral control law roll rate

limit in auto mode.

If ALCFLG (the flag controlling application of NOMBA to the

control law) is true, the exit angle (ALCXA), or number of degrees

before the end of turn to remove NOMBA is calculated as

ALCXA = RTOD * RALC / RTN

Where: RTOD is the radian to degree
conversion constant

Then, if the angle made good (AMG) is greater than or equal to

the magnitude of the turn angle minus the exit angle, ALCFLG is set

false and ALCBA (the signed bank angle command applied) is zeroed.

Otherwise, ALCBA is set to NOMBA times the sign of the turn angle.

If ALCFLG is false and the half-arc distance of the turn (A02)

is greater than RALC (if the turn angle is large enough to require

ALCBA), then RALC is compared to the distance to the start of the

turn. If the turn is a DME-arc turn, this is simply distance to go

(DTG). Otherwise it is DTG minus the distance to the tangent point

(DTT). If this distance is less than RALC, ALCFLG is set true.

The remaining code is bypassed during the second update at the



79

end of a DME-arc turn (if PDMA is true). Otherwise, processing

continues by calculating cross track distance to the planned flight

path (XTK) as follows:

XTK = Re * atan(sin(A), cos(A))

Where: Re is the local radius of the Earth (RADFT)
A A

sin(A) = P0 • UI2C
A A

cos(A) = P0 • P0P
A

P0 is the airplane position vector
A

POP is the abeam point vector (points to the center

of turn if in a turn)
A

UI2C is the unit normal vector. XTK is measured

parallel to UI2C

XTK is positive when to the right of the path.

If in a turn (TURN is true), XTK as calculated above is the

distance to the center of the turn, and must be corrected by adding

the radius of turn times the sign of the turn angle to produce the

distance to the path:

XTK = XTK + RTN * SIGNTA

The desired track (DSRTK) is then calculated as follows:

DSRTK = atan(sin(A), cos(A))
•% A

Where:

A

sin(A) = (UI2C X M) • P0P
A A

cos(A) = U12C • M
A A

M points West from POP

The track angle error (TKE) is computed as the actual minus the

desired track angle (TK - DSRTK) and SCOSD is called to calculate

the sine and cosine of TKE ($TKE, CTKE).

The remaining code computes DTOTL (used by time guidance) and

the nominal ground speed (SDC) and acceleration commands (SDD) used

for time guidance (4D) and ground speed modes, as well as the

ground speed error (GSE) that may be displayed on line 10 of the

CDU. The _to waypoint' pointer (TOWPT) which always points to the

next waypoint ahead of the aircraft is also computed. Initially,

TOWPT is set to PTR4D and DTOTL is computed as the distance made

good (DMG) plus the center-to-center distance (CCD) to the waypoint

pointed to by TOWPT. If in the first half of a DME-arc turn, PTR4D

will still be pointing to the inbound waypoint of the turn, so



8O

TOWPT is incremented and DTOTL is increased by the distance around

the turn (CCD to the outbound waypoint). If the _speed mode
possible' flag (SPDF) in the waypoint _TOWPT' is false or if DTOTL

is less than zero (not yet beyond the first waypoint on the path),
SDC and SDD are zeroed. Otherwise, SDD is computed as the desired

speed at the _to' waypoint (.GS) minus the speed at the previous

waypoint all over the center-to-center distance between them. SDC

is then computed as the speed at the _to' waypoint minus SDD times

the distance to go (DTOGO). GSE (in knots) is then equal to GSFPS
minus SDC, divided by the knots-to-feet/second conversion factor
(KTOFPS).

GLOBAL INPUTS: ALCFLG, AMG, DMG, DTG, DTOGO, GSFPS,

PTR4D, RADFT, RALC, RTN, TEND, TURN, WPT ACT
GSFPS2,

GLOBAL OUTPUTS: ALCBA, ALCFLG, CTKE, GSE, DSRTK, DTOTL, SDC, SDD,
STKE, TKE, TOWPT, XTK

o



81

MODULE NAME:

FILE NAME:

PROCESS:

HVG6 (Primary Vertical Guidance Computations)
HVGUID.FOR

FMFAST

PURPOSE: Calculate the vertical guidance parameters.

CALLED BY: HVGUID

CALLING SEQUENCE: CALL HVG6

CALLS TO: None

DESCRIPTION:

The local index (I) is set to PTR3D + I. If I is then equal

to HLD_PTR and EXHOLD is false (indicating that holding pattern

repeat is selected) I is reset to PTR4D (which was adjusted in

HVGUID mainline code). Then, if PTR3D is less than the total

number of waypoints in the path (ACTCNT), the nominal flight path

angle for the next segment on the path (FPAN) is set from

WPT_ACT(I).FPA. If PTR3D is equal to ACTCNT, FPAN is set to zero,

as end-of-path will cause a reversion to altitude hold mode.

The distance before the waypoint to initiate the segment

update (HDIS) is then calculated as the difference between the

present and next segment flight path angles times the ground speed

squared all over 2.

HDIS = abs(FPA- FPAN) * GSFPS 2 / 2.

This is the distance required to make an asymptotic capture of the

next vertical path segment at an average vertical acceleration of

2 fps per second. A nominal minimum advance distance of 300 feet

is imposed. If the distance to go to the end of the path leg

(DTOGO) is less than HDIS, PTR3D is set to _I' and FPA is set to

FPAN. This update also occurs if PTR3D is less than PTR4D, (which

should never occur, but has been known to happen during a path

update).

Next, the commanded altitude at the abeam point (HC) is

calculated as the altitude at the _to' waypoint minus the distance

to the end of the path segment times the flight path angle of the

segment in radians.

HC = WPT ACT(TOWPT).ALT - DTOGO * WPT ACT(TOWPT).FPA * DTOR

The pointer TOWPT is used here as it always points to the upcoming

waypoint. Altitude error (HER) is then the difference between HC

and the present altitude (ALTCOR). The nominal vertical speed

(HDCR) is calculated as the ground speed in feet per second times

FPA times the cosine of the track angle error (CTKE). This value

is passed through a rate limited lag to produce the vertical speed

command HDTC. The rate limit imposed is 2.0 feet per second per

second with a lag of .125 sec. HER and HDTC are the inputs to the

VERCMD procedure used to compute the vertical steering command.



82

The planned flight path angle (PFPA) is computed as HDTC

divided by ground speed in feet per second (GSFPS) times the radian

to degree conversion factor (RTOD). PFPA is (may be) used to drive

the GAMMA wedges on the Primary Flight Display and is also used to

compute the flight path angle error for display on the CDU.

GLOBAL INPUTS: ACTCNT, ALTCOR, CTKE, DTOGO, EXHOLD, FPA, GSFPS,

GSFPS2, HDTC, HLD_PTR, PTR3D, PTR4D, WPT_ACT

GLOBAL OUTPUTS: FPA, HDTC, HER, PFPA, PTR3D



83

MODULE NAME:

FILE NAME:

PROCESS:

TGUID (Time Guidance)

TGUID.FOR

FMFAST

PURPOSE: To compute the speed command for the time path (4D) mode.

CALLED BY: FMFAST

CALLING SEQUENCE: CALL TGUID

CALLS TO: AAT, CDG

DESCRIPTION:

TGUID and its subroutines AAT and CDG, together with some code

in the HVGUID procedure, compute the longitudinal acceleration

command (SCMD) for the time guidance mode. HVGUID computes the

nominal ground speed (SDC) for the aircraft at its present

position, the average acceleration along the present path leg

(SDD), the distance made good (DMG) along the path and DTOTL, which

is DMG plus the length of the present leg minus the distance to go

to the next waypoint. TGUID computes the position of the timebox

on the path and differences that with the aircraft position to find

the separation distance (SEPR) which is used (together with SDC,

SDD and present ground speed) to compute the acceleration required

to drive SEPR to zero.

Processing begins by checking for time guidance possible. If

GUID4D is false or if NAV64K is false (the airplane must still be

on the ground), SEPR is set to zero, the time guidance first pass

flag (TGPI) is cleared and processing terminates. Otherwise, HER

and XTK are checked for non-zero values to ensure that HVGUID has

completed its initialization. If this check passes, TGPI is

checked and, if false, initialization is performed.

During initialization the 4D turn flags are cleared, the

_distance made good' for the time box (DMGI) and for the airplane

(DMG) are zeroed and the time box 4D reference pointer (PTR4DI) is

initialized to 2. The guidance buffer is then searched for an

entry having an arrival time (ETA) greater than the present time.

PTR4DI, PWVADR and TBOXPTR are initialized to point to this entry

and TOWPTPTR is set equal to the aircraft 4D pointer set by HVGUID

(PTR4D). (Note: the _velocity pointer' (PWVADR) serves no useful

purpose in this implementation, but is a carry over from the

original code where it was useful. TBOXPTR and TOWPTPTR are only

used during the initialization process). If the airplane is ahead

of the timebox (TOWPTPTR is greater than TBOXPTR), DMG is increased

by the center to center distance (CCD) of the leg indicated by

TBOXPTR and TBOXPTR is incremented. If the timebox is ahead of the

airplane, DMGI is increased by the CCD indicated by TOWPTPTR and

TOWPTPTR is incremented. This is continued until TBOXPTR equals

TOWPTPTR. TGPI is then set and the average path acceleration in

fps/sec (SDDC) is calculated by differencing the speed in the

waypoints at the beginning and end of the leg the timebox is

presently on (as indicated by PWVADR), divided by the nominal time

for the leg.



84

SDDC =
KTOFPS * (WPT_ACT (PWVADR) .GS - WPT_ACT (PWVADR-I) .GS)

WPT ACT (PTR4DI) .TIME

The initial timebox velocity in fps (SDCC) is then computed as the

speed at the _to' waypoint minus SDDC times the desired time to

this waypoint.

TOTIME = WPT ACT (TBOXPTR).ETA

SDCC = KTOFPS * WPT ACT(PWVADR).GS - SDDC * (TOTIME - TIME)

The distance from the timebox to the _to' waypoint is then

calculated in one of two ways, depending on whether the initial

velocity is positive or negative:

for SDCC < zero:

SC = (SDCC/SDDC + TOTIME - TIME) * KTOFPS * WPT_ACT(PWVADR).GS/ 2.

I.e, the time for SDCC to become positive plus the time to the

waypoint, all times the average speed on the path. The timebox
remains frozen at the beginning of the path until SDCC becomes

positive.

for SDCC >= zero:

SC = (TOTIME - TIME) * (KTOFPS * WPT ACT (PWVADR).GS + SDCC) / 2.

If the 'to' waypoint is not the start of a DME arc turn, SC is

adjusted by adding the distance to the tangent point and
subtracting the half arc distance to the midpoint of the turn (if

any). (This is apparently done to facilitate calculation of
timebox position in a turn. Since the drawing of the timebox

itself is handled entirely by the displays computer in the present

implementation, this code could be simplified considerably).

SC = SC + WPT ACT(PTR4DI) .DTT - WPT ACT(PTR4DI) .ARC2

If the _from' waypoint is the inbound waypoint of a DME turn, the
box is in the second half of the turn. TURN1 and TEND1 are set,

the magnitude of the turn angle (MAGTAI) is set from WPT_ACT(PTR4DI

- 1).ANGLE, the turn radius (RT) is set from WPT ACT(PTR4DI).RAD
and the arc-distance made good (ADMG) is set to WPT ACT(PTR4DI).CCD

- SC. Subroutine AAT is then called to complete turn processing,

CDG is called to compute the speed command and processing

terminates until the next pass. In all other cases, MAGTAI is set

from WPT ACT(PTR4DI).ANGLE. Then, if SC is less than the distance

to the t--angent point, TURN1 is set and ADMG and RT are set as

above. (Two lines, depending on the state of TEND1, are coded but

since TEND1 was cleared at the beginning and has not been set, only

the line that sets RT from WPT ACT(PTR4DI).RAD is meaningful). AAT

is then called to perform the turn processing and CDG is called (at



85

the end of this procedure) to compute the speed command.

On subsequent passes, processing begins by integrating SDDC

into SDCC. If SDCC is then positive, DELTAT * SDCC is subtracted

from SC. If the timebox is not presently in a turn (TURN1 is

false), the end of the straight leg is checked for. This is

indicated when SC becomes less than zero or less than the distance

to the tangent point. If, when this occurs, PTR4DI is equal to the

number of waypoints on the path (ACTCNT), the end of the path has

been reached, so GUID4D is cleared, PTR4DI is set to 1 and

processing terminates. Otherwise, if this is the start of a DME

arc turn (the DMA flag is set in the _to' waypoint buffer), SDDC,

SDCC and SC are reset as given:

SDDC =
KTOFPS * (WPT_ACT (PWVADR) .GS - WPT_ACT (PWVADR-I) .GS)

WPT ACT (PTR4DI) .TIME

SDCC = KTOFPS * WPT ACT(PWVADR).GS - SDDC * (TOTIME - TIME)
m

SC = WPT ACT(PTR4DI+I) .CCD

Where: PWVADR is set to PTR4DI + i.

If the DMA flag is set in the _from' waypoint, this must be the

second update at the end of a DME turn, so MAGTAI is set to zero.

Otherwise, MAGTAI is set to WPT ACT(PTR4DI).ANGLE. RT is set to

WPT ACT(PTR4DI).RAD, the arc-distance made good is zeroed, TURN1 is

set and AAT and CDG are called.

GLOBAL INPUTS: ACTCNT, DMG, GUID4D, HER, NAV64K, PTR4DI, SC,

SDCC, TEND1, TIME, TURN1, WPT_ACT, XTK

GLOBAL OUTPUTS: ADMG, DMG, GUID4D, PTR4DI, SC, SDCC, SEPR, TEND1,

TOTIME, TURN1



86

MODULENAME:
FILE NAME:
PROCESS:

AAT (Turn Computations)
TGUID.FOR
FMFAST

PURPOSE: To perform timebox calculations when in a turn.

CALLED BY: TGUID
CALLING SEQUENCE: CALL AAT
CALLS TO: None

DESCRIPTION:
Unconditional processing consists of integrating the time box

velocity (SDCC) into the arc-distance made good (ADMG), then

computing the angle made good (AMGI) as ADMG divided by the turn

radius (RT) times the radian to degree conversion factor. If the

timebox is already in the second half of the turn (TEND1 is true),

a check is made for end of turn: if AMGI is equal to or greater

than the magnitude of the turn (MAGTAI), TURN1 and TEND1 are set

false and processing terminates. Otherwise, a check is made for

the halfway point: if 2 * AMGI is equal to or greater than MAGTAI,

TEND1 is set true and the timebox distance-made-good (DMGI) is

updated by the leg center to center distance (CCD). If DMGI is

less than the aircraft distance made good (DMG), DMG is reduced by

DMGI and DMGI is set to zero. Otherwise DMGI is reduced by DMG and

DMG is set to zero. (This is done to maintain DMG and DMGI at the

minimum values required to correctly compute the separation

distance, thus improving computational accuracy.) PTR4DI is then

incremented. If PTR4DI is then equal to HLD PTR and EXHOLD is

false, the time box has just completed a circuit of a holding

pattern that is still in effect. To repeat the pattern, PTR4DI is

set to PTR4DI - 4. (This needs to be checked. The timebox should

probably skip a holding pattern altogether, or at best repeat it

only once.) The _velocity pointer' (PWVADR) is then set equal to

PTR4DI.

If not in a DME-arc turn, the timebox acceleration, velocity

and distance to go (SDDC, SDCC, SC) are then reset as given (this

is done in mainline code for a DME turn):

KTOFPS * (WPT_ACT (PWVADR) .GS - WPT_ACT (PWVADR-I) .GS)
SDDC =

WPT ACT (PTR4DI) .TIME

SDCC = KTOFPS * WPT ACT(PWVADR-I).GS

SC = WPT ACT (PTR4DI) .CCD

If the new _to' waypoint is not the entry to a DME-arc turn, SC is

corrected by adding the distance to the tangent point (DTT) and

subtracting the half arc distance at the next turn (ARC2).



GLOBAL INPUTS:
WPTACT

87

ADMG, DMG, EXHOLD, HLD_PTR, PTR4DI, SDCC, TEND1,

GLOBAL OUTPUTS: ADMG, DMG, PTR4DI, SC, SDCC, TEND1, TURN1



88

MODULENAME:
FILE NAME:
PROCESS:

CDG (Primary, Time Guidance Computations)
TGUID.FOR
FMFAST

PURPOSE: To compute the acceleration command (SCMD)
guidance.

for time

CALLED BY: TGUID
CALLING SEQUENCE: CALL CDG
CALLS TO: None

DESCRIPTION:
The timebox distance to go (SC) is set into DTOGOI. If the

_to' waypoint is not a DME-arc turn, DTOGOI is then corrected by
subtracting the distance to the tangent point and adding the half-
arc distance to the midpoint of the next turn (if any). The
timebox equivalent of the aircraft total distance made good (DTOTL)
is then computed in the variable SEPRby first setting SEPR to the
time box distance made good (DMGI) plus the center-to-center
distance (CCD) to the guidance buffer entry pointed to by PTR4DI.
If this waypoint is the entry to a DME-arc turn and TURN1 is true
with TEND1 false, the timebox is in the first half of that turn,
and this entry is behind us. In that case SEPR is increased by the
arc-distance made good in the turn (ADMG). In all other cases,
this entry is still ahead of the timebox and SEPR is decreased by
DTOGOI. The seperation distance between the aircraft and the
timebox (SEPR) is then computed as _SEPR' minus DTOTL. Obviously

some names should be changed here to avoid confusing the innocent.

The time error is then computed as the negative of SEPR

divided by the average of the timebox and the aircraft speed, with

a negative timebox velocity ignored:

TIMERR = -SEPR / ((SDC + max(0., SDCC)) / 2)

Where: SDC is the nominal speed on the path;

SDCC is the time box velocity (limited

to positive values);

The time path acceleration command (SCMD) is then computed as the

sum of the nominal path acceleration (SDD) + .0025 * SEPR, limited

to one percent of the nominal velocity, plus 0.i times the

difference between SDC and the present groundspeed:

SCMD = SLIM((SDD + .0025 SEPR), .01 SDC) + 0.i (SDC - GSFPS)

SCMD is then attenuated as the maximum CAS or MACH is approached,

or set to -.25 if either maximum is exceeded. (This code is not

necessary, as overspeed protection is applied elsewhere, nor is it

completely correct as coded). Finally, the resultant SCMD is

limited to a maximum of +/-I.0 fps/sec. Note: The above equation

is erroneous in that the nominal timebox acceleration (SDDC) should

be used vice SDD.



89

GLOBAL INPUTS: A/3MG, CAS, DTOTL, GSFPS, MACH, SC, SDC, SDCC,

SDD, TURN1, TEND1, WPT_ACT

GLOBAL OUTPUTS: SCMD, SEPR, TIMERR



9O

MODULE NAME:

FILE NAME:

PROCESS:

NAVIG (Simulated Airplane)

NAVIG.FOR

FMFAST

PURPOSE: To permit ground checkout of several dynamic functions of

the Flight Management/Flight Controls software.

CALLED BY: FMFAST

CALLING SEQUENCE: CALL NAVIG

CALLS TO: ENGAGE_CAS, FLYIC

DESCRIPTION:

NAVIG is the executive program for the point mass model

simulated airplane. It's operation is controlled via the utility

program VIEW, by setting bits in the simulation control word

SIMFLG. The actions initiated by setting different bits in SIMFLG

are enumerated below:

o Bit 0 - Initialize airplane

o Bit 1 - Fly airplane @ 200 knots

o Bit 2 - Fly Calibrated Air Speed or 4D path

o Bit 3 - Not used

o Bit 4 - Hold airplane
o Bit 5 - Not used

o Bit 6 - Not used

o Bit 7 - Force VOR2 = CVOR2 for navigation testing

(HNAVSL)

o Bit 8 - Force DME2 = CDME2 for navigation testing

(HNAVSL)

o Bit 9 - Force DME3 = CDME3 for navigation testing

(HNAVSL)

o Bit 10-12 - Not used

o Bit 13 - Index to APDAT (Sim initialization data)

o Bit 14 - Index to APDAT (Sim initialization data)

o Bit 15 - Set up Sim initialization values per bits 13, 14

Upon entry, the IC and RUN discretes are checked to see if a

change in Flight Controls operate mode was selected. If IC and

LABFLG are both true, SIMFLG is set to HEX 0011 (reinitialization).

If RUN and RUNM are both true, SIMFLG is set to 0. SIMFLG is then

checked for a negative value (Bit 15 set). If so, bits 13 and 14

are used as an index into the APDAT matrix tO set up the IC values

for the airplane, and SIMFLG is set to HEX 0011.

If bit 0 of SIMFLG is set, which signifies initialization of

the airplane, an initialization counter (FLYICF) is set to -32 if

it was zero. For the next 32 iterations, the counter is

incremented, subroutine FLYIC is called to perform initialization,

calibrated air speed (CAS) is set to 2 knots, the Ground-speed-

greater-than-four-knots flag (NAVFLG) is cleared and subroutine

ENGAGE CAS is called to set up the remaining variables required for

operation of the flight software. (This is a no-op, since

ENGAGE CAS does nothing until the hold and ic bits are cleared from

FLYFLG). On the 32nd iteration, bit 0 of SIMFLG is cleared



91

(allowing further processing to proceed) and the guidance possible
flags GUID2D and GUID3D are forced true.

If any one of the bits (other than bit 0), that control the

simulated airplane is set the following occurs:

o FLYFLG and AUTOE are set true signifying that the simulated

airplane is now in operation.

o If the hold bit is set, CAS is set to 2 knots and NAVFLG is
turned off.

o If the hold bit is off, a check is made to determine if the

CAS bit (bit 2) is set. If so, CAS is computed from the

longitudinal acceleration command (ATCMD) and the ground

speed in feet per second variable (GSFPS). Otherwise, CAS

is set to a constant 200 knots, or the value stored in
SIMCAS.

Procedure ENGAGE_CAS is then called to set up all other required
variables.

GLOBAL INPUTS: ATCMD, CAS, GSFPS, IC, LABFLG, RUN, RUNM, SIMCAS,
SIMFLG

GLOBAL OUTPUTS: AUTOE, CAS, FLYFLG, GUID2D, GUID3D, NAVFLG,
SIMALT, SIMCAS, SIMFLG, SIMHDG, SIMLAT, SIMLON, SMMAGV



92

MODULENAME:
FILE NAME:
PROCESS:

FLYIC (Initialization)
NAVIG.FOR
FMFAST

PURPOSE: To perform basic
airplane.

initialization for the simulated

CALLED BY: NAVIG
CALLING SEQUENCE:CALL FLYIC
CALLS TO: None

DESCRIPTION:
This procedure initializes the value of the fast loop

navigation (HNAVFS) position integrators, IDDLAT, IDDLON and ALT,
to the values found in SIMLAT, SIMLON and SIMALT, respectively.
The Control Display Unit latitude/longitude initialization flag

LLINIT is then set to prevent these variables from being

initialized by HNAVFS. HDOT complementary filter (HDCF) is set to

zero and magnetic variation (MAGVAR) is set to the value stored in

SMMAGV. (FLYFLG set prevents these from being recomputed by HNAVFS

or ERAD, respectively, but TAS also needs to be set here to work

properly with the present version of HNAVFS). The integrator for

simulated airplane heading (SMUHDG) is initialized to the value
found in SIMHDG and the simulation roll command (PHISYM) is set to

zero. The 2D, 3D and 4D guidance flags (GUID2D, GUID3D, GUID4D)

are turned off, auto engage (AUTOE) is turned off and the 2D

guidance pointer (PTR2D) is set to I.

GLOBAL INPUTS: SIMALT, SIMHDG, SIMLAT, SIMLON, SMMAGV

GLOBAL OUTPUTS: ALT, AUTOE, GUID2D, GUID3D, GUID4D, HDCF, IDDLAT,

IDDLON, LLINIT, MAGVAR, PHISYM, PTR2D, SMUHDG



MODULE NAME:

FILE NAME:

PROCESS:

PURPOSE:

ENGAGE CAS (Operate Simulator)

NAVIG.FOR

FMFAST

93

To set the simulated state variables for the simulated

airplane into the global locations for the flight
software.

CALLED BY: NAVIG

CALLING SEQUENCE: CALL ENGAGE CAS

CALLS TO: ANGL, TAN

DESCRIPTION:

If the hold or initialize bits are set in SIMFLG, an immediate

return is made to NAVIG. Otherwise the following variables are

computed:

o The simulated roll command (PHISYM) is computed as

PHISYM = .0625*(BACMD - PHISYM) + PHISYM (.77 sec lag)

PHISYM is then stored into the bank angle (ROLL);

o TAS is set equal to CAS and MACH is forced to 0.2;

o The heading for the simulated airplane (SMUHDG) is computed

as

SMUHDG = ANGL(SMUHDG + (0.5 * TMPI / TMP2))

Where: TMPI = 1.91 * PHISYM

TMP2 = MAX(CAS, i00)

SMUHDG is set into HDGTRU by HNAVFS;

o The cross track acceleration (IDDXTK) is computed as

IDDXTK = IDDXTK + DELTAT * (GRAV0*tan(PHISYM) - IDDXTK);

o The vertical acceleration (HDDOT) is set to the vertical

acceleration command (VACMD);

o The HDOT complementary filter output (HDCF) is computed as

HDCF = HDCF + DELTAT * VACMD;

o The inertial altitude (ALT) is computed as

ALT = ALT + DELTAT * HDCF.

NAVIG specific code in HNAVSL performs the additional

adjustments necessary to use these outputs in lieu of data input by

IOFLL.



94

GLOBAL INPUTS: ALT, BACMD, CAS, HDCF, IDDXTK, PHISYM, SIMFLG,
'SMUHDG, VACMD

GLOBAL OUTPUTS: ALT, HDCF, HDDOT, IDDXTK, MACH, PHISYM, ROLL,
SMUHDG, TAS



5.2 SLOW LOOP PROCESSING:

95

MODULE NAME:

FILE NAME:

PROCESS:

CDUEXC (CDU Executive)

CDUEXC.FOR

SLOW

PURPOSE: Executive for the Control Display Unit Slow loop

procedures.

CALLED BY: SLOW

CALLING SEQUENCE: CALL CDUEXC

DESCRIPTION:

A detailed description of CDUEXC and the attendant subroutines

involved in CDU processing is found in the document

NASA Contractor Report 189606

Advanced Transport Operating System (ATOPS)

Control Display Unit Software Description



96

MODULENAME:
FILE NAME:
PROCESS:

BLOW (Wind Computations)
BLOW.FOR
SLOW

PURPOSE: Calculate wind speed and direction.

CALLED BY: SLOW
CALLING SEQUENCE:CALL BLOW
CALLS TO: SQRT, ATAN2, SCOSD

DESCRIPTION:
If the radio altitude (HRAD) is less than five feet, the wind

direction is not computed and wind speed is set to zero.
Otherwise, two separate wind speed models are computed. The
equations are as follows:

EQUATION i:

OLDWD= atan2 (X, Y)
OLDWS-- sqrt (X2 + y2)

Where : X =
y =

VE =
VN =

SINTH =

COSTH =

TASGS =

SINTH * TASGS - VE

COSTH * TASGS - VN

velocity east in knots

velocity north in knots

sin of true heading

cos of true heading

true airspeed corrected for gamma

Equation 1 is from the original C-4000 software. It appears

accurate when flying straight and level, but indicates erroneous

winds when the aircraft is maneuvering.

EQUATION 2:

DFVWD = atan2 (X, Y)

DFVWS = sqrt (X 2 + y2)

Where: X

Y

ASPD

S

C

TMPA

= S * ASPD - VE

= C * ASPD - VN

= TAS * CTHET

= sin (HDGTRU-TMPA*SROLL)

= cos (HDGTRU-TMPA*SROLL)

= ALFAV or ALW - I, depending on

the setting of Bit 0 of MCONF

The above equations were derived from the DFVLR 4D Guidance

experiment. In the lab it appears free of the erroneous

indications during maneuvering, but has never been adequately

tested in the air.

Setting WNDMOD to i, 2 or 3 (via VIEW) allows the operator to

select one of the 2 wind models or just accept the IRS

computations. The selected values (I: OLD, 2: DFV, 3: IRS) are set



97

into WS and WD.

GLOBAL INPUTS: ALFAV, ALW, COSTH, CTHET, HDGTRU, HRAD, IRSWD,

IRSWS, MCONF, NAV64K, SINTH, SROLL, TAS, TASGS, VE, VN,

WNDMOD

GLOBAL OUTPUTS: DFVWD, DFVWS, OLDWD, OLDWS, WD, WS



98

MODULE NAME :

FILE NAME:

PROCESS :

EPRLMT (Engine Pressure Ratio Limit)
EPRLMT.FOR

SLOW

PURPOSE: To calculate the maximum engine pressure ratio (EPR) for

the Boeing 737 aircraft jet engine.

CALLED BY: SLOW

CALLING SEQUENCE: CALL EPRLMT

CALLS TO: None

DESCRIPTION:

EPRLMT produces maximum Engine Pressure Ratio (EPR) limits for

climb (MCLEPR), cruise (MCREPR), and continuous thrust (MCTEPR).

Depending upon the setting of EPRFLG (pilot selected via the CDU),

one of these is selected as the maximum EPR (MXEPR) for display and

for use by the auto throttle control law (ATHCL).

The program is organized in two logical sections, for engine

bleed-air on, and for engine bleed-air off. If either engine has

bleed-air on, the equations for bleed-air on are used (resulting in
lower EPR limits). The calculations consider the effect of static

air pressure (STAT_PRES), total air temperature (TAT), and altitude

(ALT). A first order approximation is used to calculate the

maximum EPR for each possible case. Constants for the

approximations were supplied by Boeing for the JTSD-7 engine and

are documented in the equations below.

Static pressure is first calculated as a function of
barometric altitude:

AF = ALT / 145499.6

STAT PRES = 29.92 (i.0 - AF (5.258 - AF (11.9 - 12.16 AF)))

If airbleed is on (the path taken if airbleed is on for either

engine), the following equations are evaluated:

MXEPRT = 1.94 - .00628 TAT

if (ALT > 30000) then

AF = (ALT - 30000.) / 5000.

MXEPRT = MXEPRT - AF (.025 + .00039 TAT)

endif

MXEPRP = 3.514 - .0535 STAT PRES

Where: MXEPRT is max EPR as a function of temperature;

MXEPRP is max EPR as a function of pressure.

MCLEPR = MCTEPR = MCREPR = min(MXEPRP, MXEPRT, 2.35)



99

if (1500. < ALT < 30000.) then

if (ALT > 18500.) then

MCTEPR = MCLEPR

else

if (TAT < 17.5) then

MXEPRT = 2.03 - .00545 TAT

else

MXEPRT = 2.08 - .008375 TAT

endif

MXEPRP = 3.56 - .0547 STAT PRES

MCTEPR = min(MXEPRP, MXEPRT, 2.35)

endif

if (ALT > i0000.) then

if (TAT < -20.) MCREPR = 1.8568 - .00591 TAT

elseif (TAT > 20.)

MCREPR = 1.764 - .00571 TAT

else

MCREPR = 1.8125 - .008125 TAT

endif

endif

If airbleed is off, the following equations are evaluated:

MXEPRT = 1.97 - .0068 TAT

MXEPRP = 3.589 - .0549 STAT PRES

MCLEPR = MCTEPR = min(MXEPRP, MXEPRT)

if (TAT < -20.) then

MXEPRT = 1.8568 - .00591 TAT

elseif (TAT > +20.) then

MXEPRT = 1.843 - .00714 TAT

else

MXEPRT = 1.855 - .00775 TAT

endif

MCREPR = min(MXEPRP, MXEPRT)

if (1500. < ALT < 18500.) then

if (TAT >= 17.5) then

MXEPRT = 2.053 - .00538 TAT

else

MXEPRT = 2.11 - .00853 TAT

endif

endif

GAEPR = MCTEPR

if (EPRFLG = i) then



i00

MXEPR = MCLEPR

elseif (EPRFLG =-i) then

MXEPR = MCREPR

else

MXEPR = MCTEPR

endif

GLOBAL INPUTS: ABLOFF, ABROFF, ALT, EPRFLG, TAT.

GLOBAL OUTPUTS: MCLEPR, MCREPR, MCTEPR, MXEPR.



I01

MODULENAME:
FILE NAME:
PROCESS:

ERAD (Earth Radii Computations)
ERAD.FOR
SLOW

PURPOSE: To compute the radii of curvature in the East-West and
North-South planes.

CALLED BY: SLOW
CALLING SEQUENCE:CALL ERAD
CALLS TO: ANGL, MAG_VAR

DESCRIPTION:
If the simulated airplane is engaged, then magnetic variation

(MAGVAR) has been set from the simulator data tables (SMMAGV). If
not, then MAGVARis set by ERAD as follows:

If IRS navigation is valid (INAVV true), MAGVARis computed as
the difference between IRS true heading (THDG) and magnetic heading
(MAGHDG). Otherwise, the function MAGVAR is invoked to compute
the local MAGVARbased on present latqtude (LAT) and longitude
(LON) .

The local North (RM) and East (RN) radii of curvature (using
the WGS84 Earth model) and several related variables used by the
navigation and guidance procedures are then set by evaluating the
following equations:

RN = RADIUS (i. + ELLIP * sin_(LAT))
RNP = CLAT (RN + WGSALTFTONM)
RM = RADIUS (I. - 2. ELLIP + 3. ELLIP sin2(LAT))
RMP = RM + WGSALTFTONM

Where: RADIUS

ELLIP
SLAT
CLAT
WGSALT

is the nominal Earth radius in
nautical miles (taken as 3443.9186
NM).
is the eccentricity (3.3528107E-3)
is the sine of the present latitude.
is the cosine of the present latitude.
is the present altitude corrected for the
height of the local mean sea level above
the reference geoid.

RADFT = NMTFT (RM + RN) / 2. + WGSALT

DLATFT = PuMP NMTFT DTOR

DLONFT = RNP NMTFT DTOR

Where: RADFT

DLATFT

DLONFT

DTOR

is the best-fit local Earth

radius in NM.

is the number of feet per degree of LAT.

is the number of feet per degree of LON.

is the conversion from degrees to radians.



102

GLOBAL INPUTS: ALTCOR, CLAT, FLYFLG, INAW, LAT, LON, MAGHDG,
SLAT, THDG

GLOBAL OUTPUTS: DLATFT, DLONFT, MAGVAR,RADFT, RM, RMP, RN, RNP



103

MODULENAME:
FILE NAME:
PROCESS:

HNAVSL (Horizontal Navigation Slow Loop)
HNAVSL.FOR
SLOW

PURPOSE: To manually or automatically tune and monitor the path
defined and cross track stations and use information from
these stations and/or an ILS installation to create
aircraft position updates for use by fast loop
navigation.

CALLED BY: SLOW

CALLING SEQUENCE: CALL HNAVSL

CALLS TO: ANGL, CRBSC, GET_REAL, RADCAL, SIN, SIND, SQRT,
TAN, TUNPTH, TUNXTK

DESCRIPTION:

The radio update navigation routine (HNAVSL) acts as the

executive for navigation updates. It calls the routines that

autotune (or manually tune) the VORTAC's as path-defined or cross-

path stations. Once suitable stations have been selected, HNAVSL

performs validity checks and calls routines to compute range and

bearing from the stations. The difference between the measured

position and the estimated position is weighted according to the

navigation mode (Inertial with radios, Air Data mode with radios,

or radios only). These weighted differences are output for use in

updating the fast loop position and velocity estimates. In

addition to VORTAC's, ILS may be utilized if the airplane is in the

correct zone. The ILS derived bearing of the airplane from the

runway center line may be used in conjunction with a DME distance

to provide position error estimates. ILS may also be used as the

sole navaid in the runway area.

The acronym for the CDU display (IDD, ID×, etc.) is created

according to the navigation mode being used and the combination of

stations tuned. This navigation mode acronym is also displayed on

the Navigation display. MLS and GPS inputs may also be used for

navigation, but this is accomplished entirely in foreground

processing. HNAVSL sets up the appropriate navigation mode

display, but continues to concern itself with selection and tuning
of standard navaids.

HNAVSL is logically partitioned into the following sections:

Initialization code:

Packed error flag words F0, F2, F3, DMEER, and VORER to be

used in the current HNAVSL pass are cleared. Local variables

(SLLAT, SLLON) are assigned the most recent position estimate from

fast loop navigation and local copies (DME3, DME2, VOR2, SLOCDV,

SGSDEV) are made of the most recent navaid input data. The Boolean

flag, MLSFLG, is set if MLSMOD is true or if MLS navigation updates

have been selected via the nay pallet switch (MLSSLI) and MLSVLD is

true. Local subroutine RADCAL is then called to compute the

airplane position vector, PSVECT.



104

Station tuning:
The local subroutine TUNPTH and the external subroutine TUNXTK

are next called to select and tune the path (DME2) and cross-path

(DME3) stations, respectively. Failures are recorded in

FALST2/FALST3. On return, additional checks are performed to

ensure that valid signals are being received from the selected

stations, with errors recorded in DMEER and VORER as appropriate.

Ultimately, the error summary is logged in F0, F2 and F3 (for DME3,

DME2 and VOR2, respectively).

Position error computations:

Processing begins with the cross station, DME #3. If bit 9 of

the simulated airplane control word (SIMFLG) is set, DME3 is set

equal to the computed range (CDME3) and the station validity flag

(DME3VD) is ignored. Otherwise, bit 13 is set in DMEER if DME3VD

is false. Bit 14 of DMEER is set if any bits were set in FLSTA3 by

TUNXTK. Next, the basic filter gain (DELGN) is set to 0.5 if

either the Air Data (FLADM) or Radio (FLRM) mode flag is set and

otherwise set to 0.25. The magnitude of the measured range is then

checked. If DME3 is not greater than zero (indicating invalid

data), bit ii is set in DMEER, and if it is greater than 200

nautical miles (nm), bit 12 is set. Next, if the selected station

address (NVAD3A) is zero (no station selected), CDME3 is zeroed.

Otherwise, local subroutine CRBSC is called to compute the range

and bearing of the station. (Note: the bearing is not used for

DME #3). CRBSC also computes the cosine of the depression angle

(COSDA) and the sine and cosine of the computed bearing (SINCB,

COSCB). If the computed range is greater than 200 nm, bit i0 is

set in DMEER, or if CDME3 was forced to zero, bit 7 is set.

Otherwise, DRANGE is computed as (CDME3 - DME3) times COSDA. If

this delta ground range is greater than 5 nm, bit 9 of DMEER is

set. Otherwise, the North and East position errors (elements 1 and

5 of the H matrix) are computed as follows:

H(1) = DRANGE * COSCB * DELGN

H(5) = DRANGE * SINCB * DELGN

Additionally, bit 8 of F0 is set if the aircraft altitude is

greater than the ground range to the station. This _H > R'

indication is a 'not broke but don't use' flag which inhibits

navigation using this station, but does not cause retuning. (Note:

this check as implemented works fine on the East coast, but would

not be reliable in Denver. Some potential fixes would be:

Subtract CRBEL from IDDALT before comparison; Check for COSDA >

0.707; Use TRANSV(3) (once fixed) for the comparison).

Finally, DMEER is OR'd into F0. If DMEER was zero, the

station timer (TIMSI) is cleared and the _data timeout' bit in

FLSTA3 should be cleared. (Bit 12 (_no path station') is being

cleared).
If DMEER was non-zero, TIMSI is checked. If it was previously

zero, it is set to the present time. Otherwise, a check is made to

see if the error has existed for more than 15 seconds ((TIME -

TIMSI) > 15). If so, TIMSI is cleared and, if the bank angle



105

(ROLL) is less than 15 degrees, bit 14 is set in FLSTA3.

Subroutine TUNXTK will check FLSTA3 on the next iteration and

retune if necessary. The _timeout' error is ignored when ROLL is

greater than 15 degrees, as the data is not used under these
conditions.

The path station (DME2) is processed next. Processing is the
same as for the cross station except as noted below. The PTHSTA

flag is set to enable additional processing in CRBSC. Provision is

made for calculating position errors from measured versus

calculated VOR2 bearing as well as from DME range, although the

present hardware configuration does not permit input of VOR bearing

data. The VORVLD bit is hardwired false in low level code (DISFD)

to prevent its inadvertant use for navigation. Nevertheless, the

simulator is set up to test the code. Bit 8 of SIMFLG is used for

DME2 and bit 7 is used for VOR2. Errors detected by TUNPTH are

logged in FLSTA2 and the error summary is stored in F2 (for the

DME) and F3 (for the VOR). If no station has been selected (NVAD2A

= 0), both calculated range (CDME2) and calculated bearing (CVOR2)

are zeroed. Any DME errors are logged in both DMEER and VORER, as

the VOR data is necessarily scaled by range to the station.

Additional errors are logged in VORER for CDME2 > 150 nm (bit 12),

delta bearing (DELBR) > 30 degrees (bit 9), and DELBR * ground

range (GRMAG) > 5 nm (bit II). If the DME data passes all checks,

North and East position errors are computed as follows:

H(3) = DRANGE * COSCB * DELGN

H(7) = DKANGE * SINCB * DELGN

If it were possible for the VOR data to pass all checks, DELBR

would be converted to radians and the North and East position

errors computed as follows:

H(4) = TEMPI * DELBR * TRANSV(1) * DELGN

H(8) = TEMPI * DELBR * TRANSV(2) * DELGN

Where: TEMPI is a VOR weighting gain computed as

.125 * (DMEMAX - DME2) / DMEMAX,

TRANSV is the transpose vector computed by

CRBSC (measured in the local horizontal

plane),

DMEMAX is DME max range = 200 nm.

Finally, DMEER and VORER are OR'd into F2 and F3 and 'data

time-out' is checked, using TIMS2 and the same error in clearing

FLSTA2 as noted above for FLSTA3.

ILS processing:
Checks are made to see if the aircraft is within the

appropriate range and bearing of a selected ILS station. If GP$

navigation mode has been selected (NAVMOD = 2), KADCAL is first

called to recalculate the airplane position vector using GPS

position data. This is to preclude a possibly erroneous ILSZON

calculation based on radio navigation data. If an airport has been



106

selected and it is within the delta lat/lon limits, CRBSC is called

to calculate the range and bearing (RNGLS, BRGLS) from the

localizer to the aircraft, and BRGLS is rotated into runway

coordinates. If the range and bearing are within limits, the

ILSZON flag (used by autoland control laws) is set, and if further

criteria are met, North and East position errors are computed from

the difference between the measured and estimated ILS bearing and

(possibly) glideslope.

Position corrections perpendicular to runway heading are

computed if neither MLS nor GPS navigation has been selected, the

localizer is valid and the localizer deviation and aircraft delta

track are within specified limits. The equations evaluated are:

DLPP = DTOR * (BRGLS - LOCDEV)

DLNPP = DLPP * TRANSV(1)

DLEPP = DLPP * TRANSV(2)

Where: TKANSV is the vector computed by CRBSC giving

the location of the localizer in locally

South, East and up coordinates in nautical

miles (nm).

If no field DME is available and the aircraft is on the last

leg of a 3D path coincident with the glideslope, position

corrections along the runway centerline may be made using

glideslope data. Two algorithms are coded. The second of these

(which was the first coded and the only one which has been used in

flight) computes both along runway and across runway corrections as

follows:

temp = RWYLEN + HTDZ / tan(GSA + GSDEV)

DLPP = (XTK + temp * sin(LOCDEV)) * FTONM

DLNPP = DLPP * SINRH

DLEPP = -DLPP * COSRH

temp = HTDZ * GSDEV / (GSA _ GSDEV)

DLPP = (HER + temp) * FTONM / tan(GSA)

DLNPP = 0.5 * (DLNPP + DLPP * COSRH)

DLEPP = 0.5 * (DLEPP + DLPP * SINRH)

Where: XTK is the 3D path crosstrack error (in feet)

HER is the 3D path altitude error (in feet)

HTDZ is height above ground level (in feet)

This algorithm works reasonably well, but the range estimate

used to scale the beam errors is derived from radar altitude

divided by nominal glide slope angle. This is subject to errors

caused by terrain, altimeter scaling errors and the maximum

altimeter range (1326 ft). In Autoland, this is masked by the fact

that the beam errors are essentially zero. If the plane is being

manually flown, however, these scaling errors can cause navigation

errors. The other algorithm attempts to avoid this problem by

using the range estimate (RNGLS) derived from CRBSC. The equations



107

are :

DLPP = XTK * FTONM + RNGLS * sin(LOCDEV)

DLNPP = DLPP * SINRH

DLEPP = -DLPP * COSRH

DLPP = (HER + DTOGO * sin(GSDEV)) * FTONM / TANGSA

DLNPP = 0.5 * (DLNPP + DLPP * COSRH)

DLEPP = 0.5 * (DLEPP + DLPP * SINRH)

Where: RNGLS is range to the localizer antenna (in nm)

DTOGO is distance to last waypoint (GPIP) (in ft)

Position correction computations:

The accumulated status bits are checked and the best

combination of available navigation aids is selected to produce the

position corrections (DPN and DPE) to fast loop navigation

(HNAVFS).

Note: the following errors exist. If DME3 is good and DME2

is bad, an attempt is made to use DME VOR navigation. The correct

VOR to use would be VOR3, but F3 is checked, which is the status

word for VOR #2. (Confusing, isn't it?). As F3 always shows bad

status, this mode is never entered. In perfect consistency, F1

(the status word for V0R #3) is checked when DME2 is good and DME3

is bad, although VOR2 would be the correct VOR to use. This CAN

cause a problem because F1 is never set to anything. It therefore

shows good status (0) for the non-existent VOR3. Should this

condition occur, the data selected would be H4 and H8, which is the

data for the (correct) VOR #2. This data is always zero (since

VOR2 is forced invalid), so the effective navigation mode is IXD or

single DME, which does not yield reliable updates. Current plans

are to correct these problems in a future release of the software.

The circular error is then computed and, if greater than 0.5

nm, the error flag, DPERRF, is set. If greater than 2.0 nm, it is

limited to 2.0 to reduce perturbation of the filter. The filter

gains (KIP, K2P) are then selected based on the available velocity

reference (INS, Air data or Radio) and the navaids in use (DME, ILS

or MLS).

Navigation mode indicators:

An ASCII character string (NAVTYP) and a coded mode word

(MNAVTY) are set up to drive indications on the CDU and the

Navigation Display, which advise the pilot as to the navigation

data source, and thus (by implication) the probable navigation

accuracy. Potential modes (arranged in hierarchical order) are as

follows:

AMX: MLS mode (MLS data used directly for navigation)

IMX: MLS nay source (MLS drives radio nay filter, which is

then used for navigation)

DGP: Differential GPS with good status

AGP: Absolute GPS with good status



108

GPn: Degraded GPS tracking _n' satellites
GXX: GPS selected but not valid

The following codes may begin with _I' (Inertial velocity
reference), _A' (Air data velocity reference) or _X' (Radio mode
only). Ixx is the only code likely to be seen.

ILD: ILS localizer and DME #2
ILG: ILS localizer and glideslope
ILX; ILS localizer only (No along track correction)

IDD: DME #3 and DME #2 (Inertial-Dual-DME)

IVD: VOR #2 and DME #2 (Presently not possible)

IDV: DME #3 and VOR #3 (Also not possible)

IDX/IXD: Single DME is tuned and valid. No navigation

updates are computed (except as noted above).

IXX: No valid DME, or bank angle greater than 15

degrees. No navigation updates are computed.

HNAVSL completes its processing by copying the local failure

flags, F0, F2 and F3, into the global flags, FOG, F2G and F3G.

GLOBAL INPUTS: ACTCNT, AIRPTS, ANTLAT, ANTLON, CDME2, CDME3,

COSRH, CVOR2, DIFMOD, DTOGO, DME2VD, DME3VD, DVE, DVN,

FLADM, FLRM, FLSTA2, FLSTA3, GPNAV, GPNAVV, GPSSEL, GSA,

GSDEV, GSVLD, HER, HRAD, HTDZ, IDDALT, IDDLAT, IDDLON,

ILDPRF, ILDHIG, ILGRNG, ILSZON, LAT, LON, LOCDEV, LOCVLD,

MAGVAR, MDME2, MDME3, MLSMOD, MLSSLI, MLSVLD, MVOR2,

NAV64K, NAVMOD, NVAD2A, NVAD3A, PTR2D, ROLL, RWYHDG,

RWYLEN, RYELEV, SATINVW, SIMFLG, SINRH, TANGSA, TIME, TK,

VORVLD, WPT_ACT, XTK

GLOBAL OUTPUTS: BRGLS, CDME2, CDME3, CVOR2, DPE, DPERRF, DPN,

DVE, DVN, FOG, F2G, F3G, ILSZON, KIP, K2P, MNAVTY,

NAVCTR, NAVTYP, RNGLS



109

MODULENAME:
FILE NAME:
PROCESS:

KADCAL (Earth Radius Calculations)
HNAVSL.FOR
SLOW

PURPOSE: Calculate the aircraft position vector, PSVECT.

CALLED BY: SLOW

CALLING SEQUENCE: CALL RADCAL

CALLS TO: COSD, SIND

DESCRIPTION:

KADCAL uses SLLAT and SLLON (the local copies of the aircraft

position estimate calculated by HNAVFS), aircraft altitude (ALTCOR)

and the Earth model parameters (RADIUS, ELLIP and ESQ) to compute

PSVECT, the ellipsoidal Earth vector from the center of the Earth

to the aircraft position. The equations evaluated are as follows

(simplified form).

temp = RADIUS * (i. + sin2(LAT) * ELLIP) + ALTCOR * FTONM

PTVECT =

temp * sin(LAT) * (I. - ESQ)

-temp * sin(LON) * cos(LAT)

temp * cos(LON) * cos(LAT)

Where: RADIUS is the nominal earth radius (3443.9186 nm),

ELLIP is the ellipticity (3.3528107 E-3), and

ESQ is the eccentricity squared (6.6943801 E-3).

All quantities are per the WGS-84 Earth model.

GLOBAL INPUTS: ALTCOR, SLLAT, SLLON

GLOBAL OUTPUTS: None



ii0

MODULENAME:
FILE NAME:
PROCESS:

CRBSC (Range and Bearing Calculations)
HNAVSL.FOR
SLOW

PURPOSE: Compute the slant range, ground range and bearing from
the aircraft to a VOR, ILS or DME.

CALLED BY: SLOW

CALLING SEQUENCE: CALL CRBSC(RANGE, BRG)

CALLS TO: ATAN2D, COSD, MXV, SIND, SQRT, VMG

DESCRIPTION:

If the path station flag (PTHSTA) is true, DPHII and DLAMI

(the delta latitude and longitude between the aircraft and the path

station) are calculated and the PTHSTA flag is cleared. DPHII and

DLAMI are used by TUNXTK to calculate the wedge angle between the

path station and the cross station.

CRBSC then uses CRBLT, CRBLG and CRBEL (the station latitude,

longitude and elevation set up by HNAVSL), and the Earth model

parameters (RADIUS, ELLIP and ESQ) to compute PTVECT, the

ellipsoidal Earth vector from the center of the Earth to the

navaid. DVECT is computed by subtracting PTVECT from PSVECT (the

vector from the center of the Earth to the aircraft, computed by

RADCAL). SRMAG (slant range to the navaid) is then computed as the

length of this vector. The equations evaluated are as follows

(simplified form).

temp = RADIUS * (i. + sin2(CRBLT) * ELLIP) + CRBEL * FTONM

PTVECT =
temp * sin(CRBLT) * (i. - ESQ)

-temp * sin(CRBLG) * cos(CRBLT)

temp * cos (CRBLG) * cos (CRBLT)

Where: RADIUS is the nominal earth radius (3443.9186 nm),

ELLIP is the ellipticity (3.3528107 E-3), and

ESQ is the eccentricity squared (6.6943801E-3).

All quantities are per the WGS-84 Earth model.

DVECT = PSVECT - PTVECT

SRMAG = VMG (DVECT, 3)

Where: VMG is an external function which returns the

magnitude of a vector of a specified length.

I.e, the square root of the sum of the squares

of the elements of the vector.

The transpose matrix (TVECT) is then computed and multiplied

times DVECT to produce the transposed difference vector, TKANSV.

The elements of TRANSV are the North, East and up coordinates of



111

the aircraft relative to the navaid in a locally horizontal plane.

That is, a plane with its origin on the geoidal approximation of

the Earth and directly under the aircraft. The equations evaluated
are as follows:

0.0 cos (LON) sin (LON)

TVECT = -cos (LAT) -sin (LAT) sin (LON) sin (LAT) cos (LON)

sin (LAT) cos (LAT) sin (LON) cos (LAT) cos (LON)

TRANSV = [ TVECT ] [ DVECT ]

Note: The Z coordinate of TRANSV (TRANSV(3)) is

incorrect because the sign of TVECT(3,2) is

incorrect. The quantity (-cos(LAT) sin(LON))

yields the correct value. TRANSV(3) is not

used in any calculation.

Finally, the ground range and bearing (magnetic) of the

aircraft from the station (GRMAG, MAGBEAR), the sine and cosine of

the (true) bearing (SINCB, COSCB) and the cosine of the depression

angle (COSDA) are computed.

GRMAG = sqrt ( TRANSVl 2 + TRANSV2 2 )

MAGBEAR = atan ( TRANSVI, TRANSV 2 )

SINCB = TRANSV I / GRMAG

COSCB = TRANSV2 / GRMAG

COSDA = GRMAG / SRMAG

TRANSV_ is then negated for use by HNAVSL in computing

position errors from the calculated VOR or ILS angular errors

(making this element positive south vice positive north).

GLOBAL INPUTS: SLLAT, SLLON

GLOBAL OUTPUTS: None



112

MODULENAME:
FILE NAME:
PROCESS:

TUNPTH (Path Defined Station Tuning)
HNAVSL.FOR
SLOW

PURPOSE: To select and tune a station for DME #2.

CALLED BY: HNAVSL
CALLING SEQUENCE: CALL TUNPTH
CALLS TO: NXTPS, TICHEX, TUNDM2, TUNEPS

DESCRIPTION:
TUNPTH, together with its internal subroutines NXTPS, TICHEX

and TUNEPS, and the external subroutine TUNDM2, selects and tunes
a navaid for DME #2 (the path station). It first checks to see if
the station was manually tuned (indicated by the auto-tune flag,
ATNAV2, being false and the station address, NVAD2A, being non-
zero). If so, it checks the status word (FLSTA2). The check
should be for _station-not-tuned (bit 13) and timer expired' or
_station failed' (any other bit set in FLSTA2). The way the

parentheses are grouped, the timer would be checked only if the
'station-not-tuned' bit is NOT set. If status is bad and ground
speed is greater than 140 kts, the RETUN2 flag is set. (In the
original NCDU code, this caused a message to be displayed on the
CDU, but this feature was not implemented in the new CDU code. Had
it been, we might have noticed that the logic used to set it is
erroneous.) Next TUNPTH calls TUNEPS and TICHEX to output the
tuning code and verify that the station has properly tuned to the
selected frequency.

If auto-tune is enabled or if no station has been selected, an
attempt is made to automatically select a path station. If ground
speed is less than 64 knots (NAV64K false), only the path defined
station may be used. PTRSTA is set to the _to waypoint' pointer
(TOWPT) and NXTPS is called to fetch the path station address. If
PTRPS is returned as a zero (indicating 'no path station'), bit 14
of F2 is set. (This is an error, but the effect is only to lose
the record of the original failure, since any bit set in FLSTA2
causes bit 14 of F2 to be set in HNAVSL mainline code. Bit 12 of
FLSTA2 should be set.) Otherwise, NVAD2A is set to PTRPS, TUNEPS
is called to output the tuning code and TICHEX is called to check
the tuning, setting bit 13 of FLSTA2 if unsuccessful for more than
four seconds. Next, FLSTA2 is set unconditionally to '1000' hex
(bit 12 only). This is also an error. The effect is to disable
radio navigation below 64 knots, while wiping out any real errors
that may have been logged. Bit 12 should only be set as indicated
above.

If NAV64K is true, full station search logic is enabled. The
_no path station' flag is cleared and the PSFAIL flag is set if any
other errors were logged in FLSTA2 and the error is timed out.
Next, a check is made to see if it's time to update the path
defined station (done when halfway to the next waypoint). If the
update has already been made (station pointer ahead of waypoint
pointer), PSFAIL is tested and if true, TUNDM2is called to find
another station. TUNEPS and TICHEX are then called as above.



113

If the station pointer is behind the waypoint pointer, it is

set equal to the waypoint pointer and NXTPS is called to find the

next path station. If the pointers are equal and the aircraft is

not yet at the halfway point and PSFAIL is false, TICHEX is called

to verify tuning. Otherwise, PTRPS is checked. If it is non-zero

and not equal to NVAD2A, NVAD2A is set to PTRPS and TUNEPS is

called to output the new tuning code. If PTRPS is zero or equal to

NVAD2A, TICHEX is called if PSFAIL is false, otherwise the station

pointer is updated and NXTPS is called. Then, if no next station
is found (PTRPS = 0), TUNDM2 is called to search for any usable

station. Otherwise, NVAD2A is set to PTRPS and TUNEPS is called to

output the tuning code.

GLOBAL INPUTS: ATNAV2,

RETUN2, TOWPT

DTOGO, FLSTA2, GS, NAV64K, NVAD2A,

GLOBAL OUTPUTS: FLSTA2, NVAD2A



114

MODULE NAME:

FILE NAME:

PROCESS:

NXTPS (Next Path Station)
HNAVSL.FOR

SLOW

PURPOSE: To get station defined by next waypoint.

CALLED BY: TUNPTH

CALLING SEQUENCE: CALL NXTPS

CALLS TO: None

DESCRIPTION:

NXTPS first checks GUID2D. If it is false, there is no path

and thus no path station. PTRPS is returned as a zero. Otherwise,

PTRPS is set equal to the station address found in the guidance

buffer entry indicated by PTRSTA, and COP is computed as one half

the center-to-center distance for the path segment pointed to by
the waypoint pointer, TOWPT.

GLOBAL INPUTS: GUID2D, TOWPT, WPT ACT

GLOBAL OUTPUTS: None



115

MODULE NAME:

FILE NAME:

PROCESS:

TUNEPS (Tune Path Station)
HNAVSL.FOR

SLOW

PURPOSE: Tune the path station (DME #2).

CALLED BY: TUNPTH

CALLING SEQUENCE: CALL TUNEPS
CALLS TO: GET WORD

DESCRIPTION:

If the path station address (NVAD2A) is non-zero, the tuning
code for the navaid pointed to by NVAD2A is fetched from the

navigation data base and placed in the tune output word (ATUNE2).
The status word (FLSTA2) is then zeroed.

GLOBAL INPUTS: NVAD2A

GLOBAL OUTPUTS: ATUNE2, FLSTA2



116

MODULE NAME :

F I LE NAME :

PROCESS :

TICHEX (Tuning Checks)

HNAVSL.FOR

SLOW

PURPOSE: Check path station tuning

CALLED BY: TUNPTH

CALLING SEQUENCE: CALL TICHEX

CALLS TO: None

DESCRIPTION:

If the input frequency code (DME2FQ) equals the output code

(ATUNE2), Or if bit 9 of SIMFLG is set (It should check bit 8 -

indicating that the DME #2 inputs are to be simulated for NAVIG),

the 'out-neq-in' bit (bit 13) in FLSTA2 is cleared and the station

fail timer (PSTMR) is zeroed. Otherwise, the _out-neq-in' bit is

set in FLSTA2 and PSTMR is checked. If PSTMR is zero (indicating

first pass for this condition), it is set to the present time in

seconds (TIME). Otherwise, PSTMR is subtracted from TIME and, if

the result is greater than 4 seconds, PSTMR is zeroed. TUNPTH

mainline code checks for PSTMR equal zero with FLSTA2 not zero.

GLOBAL INPUTS: ATUNE2, DME2FQ, FLSTA2, SIMFLG, TIME

GLOBAL OUTPUTS: FLSTA2



117

MODULENAME:
FILE NAME:
PROCESS:

TUNDM2 (Autotune DME #2)
TUNDM2.FOR
SLOW

PURPOSE : Find a suitable _path station' when no path has been
entered or the path has no stations coded.

CALLED BY: TUNPTH

CALLING SEQUENCE: CALL TUNDM2

CALLS TO: GET_LONG, GET_REAL, NXT_STA2, SEARCH_STA2

DESCRIPTION:

TUNDM2 begins by checking the _search-in-progress' flag

(RINPFL). If RINPFL is true, the high altitude flag (HIALT2) is

set according to present aircraft altitude, and NXTSTA2 is called

to update to the next station in the longitudinal strip.

If RINPFL is false, the permissable search range (ZONELM) is

set to the minimum (ZONERGE = 40 nm), the zone search counter

(RZNCTR) is reset to zero, the local strip pointer (X2PTR) is reset

to the beginning of the longitudinal strip pointers and a search is

initiated for that two degree wide longitudinal strip which

includes the aircraft present position. This search continues

until the strip is found or until the end of the longitudinal

strips in the navigation data base is found. (The present data

base contains data for all of the continental United States: 66 to

124 degrees west longitude).

When the proper strip is found, the zone pointer (RZNPTR) is

set to point to the address of the first station in the strip,

NAV ADD2 is loaded with the address of this station, RINPFL is set

true and SEARCH STA2 is called to check if this is a usable station

and search further if not.

GLOBAL INPUTS: IBPTR, IDDALT, SLLON,

GLOBAL OUTPUTS: RZNCTR, RZNPTR, ZONELM



118

MODULE NAME:

FILE NAME:

PROCESS:

NXTSTA2 (Select Next Station)
TUNDM2.FOR

SLOW

PURPOSE: Select the next station in a search sequence.

CALLED BY: TUNDM2

CALLING SEQUENCE: CALL NXTSTA2

CALLS TO: CHOOSE_STR2, EXT_RGE2, GET_LONG, SEARCH_STA2

DESCRIPTION:

The station address (NAY_ADD2) is incremented to point to the
next station in the longitudinal strip and the word at that address

is checked. If the word is non-zero, SEARCH STA2 is called to see
if this is a valid station. If the address contains a zero

(indicating the end of the strip), the zone counter (RZNCTR) is

incremented. If it is then equal to five, EXT RGE2 is called to

extend the search range. Otherwise, CHOOSE STR2 is called to

choose the next longitudinal strip.

GLOBAL INPUTS: RZNCTR

GLOBAL OUTPUTS: RZNCTR



119

MODULE NAME:

FILE NAME:

PROCESS:

SEARCH STA2 (Find Next Station)
TUNDM2?FOR

SLOW

PURPOSE: Search a longitudinal strip for a suitable station.

CALLED BY: TUNDM2, NXTSTA2

CALLING SEQUENCE: CALL SEARCH STA2

CALLS TO BMPSTA2, GET_BYTE, GETREAL, SQRT

DESCRIPTION:

Initially the search-done flag (DONE) is cleared. Each

station in the longitudinal strip is checked to verify that it is

a VORTAC, that it is not one of the stations presently tuned and

(if the high altitude flag (HIALT2) is set) that it is a high

altitude navaid. If any of these checks fail, BMPSTA2 is called to

update to the next station or set the DONE flag.

If the station is of the correct type, the distance to the

station (DIST) is approximated and the effective range of the

station (RANGE) is computed as a function of the elevation of the

aircraft above the station. If the station is out of range (DIST

> RANGE) or is beyond the allowable search range (DIST > ZONELM),
BMPSTA2 is called as above.

If all tests have passed, NVAD2A is set to the selected

station address. Note that exit from this subroutine does not

guarantee that a station has been found. At most, one full strip

will be searched. If no suitable station is found, this will be

detected by TUNDM2 on a subsequent iteration of the slow loop and
result in another call to SEARCH STA2.

GLOBAL INPUTS: ALTCOR, NVAD2A, NVAD3A, SLLAT, SLLON, ZONELM

GLOBAL OUTPUTS: NVAD2A



120

MODULENAME:
FILE NAME:
PROCESS:

BMPSTA2 (Pick Next-in-strip)
TUNDM2.FOR
SLOW

PURPOSE: Increment to the next station in a search sequence.

CALLED BY: SEARCHSTA2
CALLING SEQUENCE: CALL BMPSTA2(DONE)
CALLS TO: CHOOSE_STR2,EXT_RGE2, GET_LONG

DESCRIPTION:
The station address (NAV ADD2) is incremented to point to the

next station in the longitudinal strip and the word at that address
is checked. If this word is zero, (indicating the end of the
strip), the zone counter (RZNCTR) is incremented. If RZNCTR is
then equal to five, EXT RGE2 is called to extend the search range.
Otherwise, CHOOSESTR2--is called to choose the next longitudinal
strip. In either event, the DONE flag is then set to cause

SEARCH STA2 to exit its search sequence.

GLOBAL INPUTS: RZNCTR

GLOBAL OUTPUTS: RZNCTR



121

MODULENAME:
FILE NAME:
PROCESS:

CHOOSESTR2 (Select Next Longitudinal Strip)
TUNDM2?FOR
SLOW

PURPOSE: Choose a new longitudinal strip to search.

CALLED BY: BMPSTA2, NXTSTA2
CALLING SEQUENCE:CALL CHOOSE_STR2
CALLS TO: EXT_RGE2, GET_LONG, LOOKL2

DESCRIPTION:
This subroutine is entered when the previously selected

longitudinal strip has been searched unsuccessfully for a suitable
station. It begins by setting INDST, used by LOOKL2. (Note:
INDST is actually a constant pointing to the westernmost strip in
the navigation data base, but it cannot be computed at compile
time). One of five sections of code is then executed depending on
the value of the zone counter, RZNCTR. (hereinafter referred to as
_the value').

If the value is I, we are in that 2 degree strip which
includes the aircraft position. If another strip exists to the
east, NAV ADD2 is set to point to the first navaid in that strip.
If not (th--e location at RZNPTR+ 8 is zero), RZNCTR is set to 3 (to
insure that a subsequent entry doesn't repeat the attempt to move
east) and LOOKL2 is called to attempt to move to the west.

If the value is 2, processing proceeds identically, except
that the initial attempt is to move to the second strip to the east
of present position.

If the value is 3, LOOKL2 is called to move to the first strip

to the west of present position.

If the value is 4, the second strip to the west is chosen if

one exists. Otherwise EXT RGE2 is called to extend the search

range and reset the zone counter.

GLOBAL INPUTS: IBPTR, RZNCTR, RZNPTR

GLOBAL OUTPUTS: None



122

MODULE NAME:

FILE NAME:

PROCESS:

EXT RGE2 (Extend Search Range)
TUNDM2.FOR

SLOW

PURPOSE: Extend station search range by 40 nm.

CALLED BY: BMPSTA2, CHOOSE_STR2, NXTSTA2, LOOKL2
CALLING SEQUENCE: CALL EXT RGE2
CALLS TO: GET LONG

DESCRIPTION:

EXT RGE2 is called when all permissable longitudinal strips

have been searched out to the present search limit without finding

a suitable navaid. The zone counter (RZNCTR) is zeroed, resetting

the zone to aircraft present longitude, NAV ADD2 is set to point to

the first navaid in that strip (as indicated by RZNPTR) and the

search range limit (ZONELM) is increased by 40 nm. If this

increase results in ZONELM being more than 200 nm, the search in

progress flag (RINPFL) is cleared -- thus reinitializing the search
-- and ZONELM is reset to 40 nm.

GLOBAL INPUTS: RZNPTR

GLOBAL OUTPUTS: RNZCTR, ZONELM



123

MODULENAME:
FILE NAME:
PROCESS:

LOOKL2 (Select Next Strip to West)
TUNDM2.FOR
SLOW

PURPOSE: Choose a new longitudinal strip to the west (Look Left).

CALLED BY: CHOOSESTR2
CALLING SEQUENCE:CALL LOOKL2(INDST)
CALLS TO: GET LONG

DESCRIPTION:
The value of (RZNPTR - 24) is compared to INDST and, if

greater, NAV ADD2_ is set equal to the longitudinal strip address

found at the indicated address in the navigation data base. If

(RZNPTR - 24) is less than INDST, there are no more longitudinal
strips to the west, and EXT RGE2 is called to extend the search

range and reset the zone counter.

GLOBAL INPUTS: RZNPTR

GLOBAL OUTPUTS: None



124

MODULENAME:
F ILE NAME :

PROCESS :

TUNXTK (Cross Track Station Tuning)
TUNXTK.FOR

SLOW

PURPOSE: To tune station #3 manually or by auto-tune to a suitable
cross track station.

CALLED BY: HNAVSL

CALLING SEQUENCE: CALL TUNXTK

CALLS TO: GET_WORD, SEARCH_INIT, XTKAUTO, XTK_MAN

DESCRIPTION:

A cross-station can be either manually or automatically

selected and tuned. To manually tune a cross-station, one is

entered via the PROGRESS #2 page on the CDU. The routine handling

this CDU input finds the navaid in the navigation database and sets

its address in the navaid address variable, NVAD3A. It also clears

the cross-track mode flag, ATNAV3, indicating manual tuning mode.

When not manual tuning, ATNAV3 will be set and auto tuning will be

the active mode. In auto tuning mode, TUNXTK (with its

subroutines) searches the navigation data base for a suitable

navaid and tunes it. When error conditions are detected, new

stations may be sought.
TUNXTK first checks to see if a cross path station is

presently selected (NVAD3A not equal 0). If not, SEARCH INIT is

called to initiate the search for a station. Otherwise, F2 is next
checked for failures. (This has no effect since F2 is cleared

immediately before calling this procedure). The NAV64K flag is

then checked. If it is false (GS less than 64 knots), the airplane

must be on the ground, so no search would be successful. The

output tuning code (ATUNE3) is set equal to that of the navaid
pointed to by NVAD3A. FLSTA3 is then set to _1000' hex (which will

inhibit use of the cross station) and processing is terminated.

If NAV64K is true and ATNAV3 is true (indicating that auto-

tuning is permitted for DME3), subroutine XTK AUTO is called to

select a station. If ATNAV3 is false (indicating that the pilot

has manually selected a station), XTK_MAN is called to tune the
station and check its validity.

GLOBAL INPUTS: ATNAV3, FLSTA3, NAV64K, NVAD3A

GLOBAL OUTPUTS: ATUNE3, FLSTA3



125

MODULENAME:
FILE NAME:
PROCESS:

XTK MAN (Manual Tuning)
TUNXTK.FOR

SLOW

PURPOSE: To tune station #3 manually.

CALLED BY: TUNXTK

CALLING SEQUENCE: CALL XTK MAN

CALLS TO: CMP_FREQ, GET_REAL, GET_WORD, TUNCK

DESCRIPTION:

The output tuning code (ATUNE3) is set equal to that of the
navaid pointed to by NVAD3A, the station status word (FLSTA3) is

cleared and TUNCK is called to verify station geometry. If bad

geometry status is returned (BADG = true), the bad geometry bit
(bit ii) is set in FLSTA2 if ATNAV2 is true (forcing selection of
a new path station) and otherwise is set in FLSTA3 (which will

cause a DME fail indication on the CDU). If geometry is good,

subroutine CMPFREQ is called to verify that the selected station
has been tuned.

Note: the line of code which sets FLSTA2 sets it equal to the

_OR' of FLSTA3 (vice FLSTA2) and the _bad geometry' bit. This has

no functional significance, but could make it confusing to analyze
the status words.

GLOBAL INPUTS: ATNAV2, FLSTA3, NVAD3A

GLOBAL OUTPUTS: ATUNE3, FLSTA2, FLSTA3



126

MODULE NAME:

FILE NAME:

PROCESS:

XTK AUTO (Auto Tuning)

TUNXTK.FOR

SLOW

PURPOSE: To auto-tune station #3 to a suitable cross path station.

CALLED BY: TUNXTK

CALLING SEQUENCE: CALL XTK AUTO

CALLS TO: CMP FREQ_ GEOM_CK,

SEARCH STA

NXTSTA, SEARCH INIT,

DESCRIPTION:

XTK AUTO begins by checking that the cross station status word

(FLSTA3)--equals 0 and bit 8 of F0 (set by HNAVSL to indicate that

the station is within the H > R cone) is not 0. This check will

fail, as F0 was cleared immediately before calling TUNXTK. It

should be checking for the PATH station within the H > R cone,

which at this point would be logged in bit 8 of F2G. If within the

H > R cone and no errors have been logged for the cross station

(FLSTA3 = 0), there is no point in doing a station search as the

geometry checks would be unreliable. CMP_FREQ would then be called

to verify station tuning and processing terminated.

Processing continues by checking the search-in-progress flag

(CINPFL). If it is set, SEARCH STA is called to continue the

search. Otherwise, FLSTA3 is checked. If it is zero, or if the

only error is a _station-not-tuned' error (bit 13) which has not

timed out, GEOM CK is called to check the station geometry.

If FLSTA3 s--howed a station failure on entry or a _station-not-

tuned' has timed out, the cross station timer (XSTMR) is cleared

and XST INIT is checked. If it is false, SEARCH INIT is called to

initiate a station search. If it is true (indicating a search has

already been initiated), NXTSTA is called to select the next

station.

GLOBAL INPUTS: ATUNE3, FLSTA3, NAV64K, NVAD3A, TIME

GLOBAL OUTPUTS: ATUNE3, FLSTA2, FLSTA3



127

MODULENAME:
FILE NAME:
PROCESS:

GEOMCK (Geometry Checks)
TUNXTK.FOR
SLOW

PURPOSE: Verify the cross station / path station geometry.

CALLED BY: XTK AUTO

CALLING SEQUENCE: CALL GEOM CK

CALLS TO: TUNCK, CMP_FREQ

DESCRIPTION:

GEOM CK calls TUNCK to actually perform the geometry check.

If bad geometry status is returned (BADG = true), the bad geometry

bit (bit ii) is set in FLSTA3 (which will cause a new station to be

selected). If geometry is good, the tuning code is fetched from

the navigation data base and set in ATUNE3, FLSTA3 is zeroed and

subroutine CMP_FREQ is called to verify that the selected station
has been tuned.

GLOBAL INPUTS: FLSTA3, NVAD3A

GLOBAL OUTPUTS: ATUNE3, FLSTA3



128

MODULENAME:
FILE NAME:
PROCESS:

NXTSTA (Select Next Station)
TUNXTK.FOR

SLOW

PURPOSE: Select the next station in a search sequence.

CALLED BY: XTK AUTO

CALLING SEQUENCE: CALL NXTSTA

CALLS TO: CHOOSE_STRIP, EXT_KANGE, GET_LONG, SEARCH_STA

DESCRIPTION:

The station address (NAV_ADDR) is incremented to point to the

next station in the longitudinal strip and the word at that address

is checked. If the word is non-zero, SEARCH STA is called to see

if this is a valid station. If the word is zero (indicating the

end of the longitudinal strip), the zone counter (ZONCTR) is

incremented. If it is then equal to five, EXT RANGE is called to

extend the search range. Otherwise, CHOOSE_STRIP is called to

select the next longitudinal strip.

GLOBAL INPUTS: None

GLOBAL OUTPUTS: None



129

MODULENAME:
FILE NAME:
PROCESS:

SEARCHINIT (Initialize Station Search)
TUNXTK?FOR
SLOW

PURPOSE: Initialize the search for station #3.

CALLED BY: TUNXTK, XTK AUTO
CALLING SEQUENCE:CALL SEARCHINIT
CALLS TO: GET_LONG, GET_REAL, SEARCH_STA

DESCRIPTION:
Processing begins by setting the station high altitude flag

(HIALTF) if the aircraft is above 18000 feet. The permissable
search range (ZONLIM) is set to the minimum (ZONRGEI = 40 nm), the
zone search counter (ZONCTR) is reset to zero, the local strip
pointer (XPTR) is reset to the beginning of the longitudinal strips
and a search is initiated for a strip which includes the aircraft
present position. This search continues until the strip is found
or the end of the longitudinal strips in the navigation data base
is found. (The present data base contains data for all of the
continental United States: 66 to 124 degrees West longitude).

Once the proper strip is found, ZONPTR is set to point to the

this strip, NAV ADDR is set to the address of the first navaid in

the strip, the search-in-progress flag (CINPFL) is set and

SEARCH STA is called to select a usable station.

GLOBAL INPUTS: IBPTR, IDDALT, SLLON

GLOBAL OUTPUTS: ATUNE3, FLSTA2, FLSTA3



130

MODULENAME:
FILE NAME:
PROCESS:

SEARCHSTA (Find Next Station)
TUNXTK.FOR
SLOW

PURPOSE: To select and tune a suitable cross track station.

CALLED BY: SEARCH_INIT, XTK_AUT0
CALLING SEQUENCE: CALL SEARCH_STA
CALLS TO: BUMPSTA, CMP_FREQ,

GET WORD, TUNCK
GET_BYTE, GET_REAL,

DESCRIPTION:
Initially the search-done flag (DONE) is cleared. Each

station in the lonitudinal strip is checked to see if it is a
VORTAC and (if the high altitude flag (HIALTF) is set) if it is a
high altitude navaid. If either of these checks fail, BUMPSTA is
called to select the next station and set the DONE flag (if this
involved selection of a new longitudinal strip) to cause an exit
from the subroutine.

If the station is of the correct type, TUNCK is called to
check station geometry. If a bad geometry status is returned, or
if either DME2 or DME3 is already tuned to this station, BUMP STA
is called as above. Otherwise, FLSTA3 is cleared, the _search-in-
progress' flag (CINPFL) is cleared, NVAD3A is set to the selected
station address, ATUNE3 is set to the tuning code found in the
navigation database for this station and CMP_FREQis called to
verify the tuning. Finally, the DONEflag is set to cause an exit.

GLOBAL INPUTS: ATUNE3, NVAD2A, NVAD3A

GLOBAL OUTPUTS: ATUNE3, FLSTA3, NVAD3A



131

MODULENAME:
FILE NAME:
PROCESS:

CMP_FREQ(Check Station Tuning)
TUNXTK.FOR
SLOW

PURPOSE: Verify tuning of DME3.

CALLED BY: GEOM_CK,SEARCH_STA, XTK_AUTO, XTK MAN
CALLING SEQUENCE:CALL CMP_FREQ

CALLS TO: None

DESCRIPTION:

If the input frequency code (DME3FQ) equals the output code

(ATUNE3), or if bit 9 of SIMFLG is set (indicating that the DME #3

inputs are to be simulated for NAVIG), the station fail timer

(XSTMR) is zeroed. Otherwise, the _out-neq-in' bit is set in

FLSTA3 and XSTMR is checked. If it is zero (indicating first pass

for this condition), it is set to the present time in seconds

(TIME).

GLOBAL INPUTS: ATUNE3, DME3FQ, FLSTA3, SIMFLG, TIME

GLOBAL OUTPUTS: FLSTA3



132

MODULE NAME:

FILE NAME:

PROCESS:

BUMP STA (Pick Next-strip)

TUNXTK.FOR

SLOW

PURPOSE: Increment to the next station in a search sequence.

CALLED BY: SEARCH STA

CALLING SEQUENCE: CALL BUMP STA

CALLS TO: CHOOSE_STRIP, EXT_RANGE, GET_LONG

DESCRIPTION:

The station address (NAV_ADDR) is incremented to point to the

next station in the longitudinal strip and the word at that address

is checked. If the word is non-zero, Processing is terminated. If

the word is zero (indicating the end of the strip), the zone

counter (ZONCTR) is incremented. If it is then equal to five,

EXT_RANGE is called to extend the search range. Otherwise,

CHOOSE_STRIP is called to select the next longitudinal strip. In
either case, a DONE status is returned.

GLOBAL INPUTS: None

GLOBAL OUTPUTS: None



133

MODULENAME:
FILE NAME:
PROCESS:

CHOOSE_STRIP (Select Next Longitudinal Strip)
TUNXTK.FOR
SLOW

PURPOSE: Select a two degree strip to search for a station.

CALLED BY: BUMP_STA, NXTSTA
CALLING SEQUENCE:CALL CHOOSESTRIP
CALLS TO: EXT_RANGE, GET_LONG, LOOK_L

DESCRIPTION:
This subroutine is entered when the previously selected

longitudinal strip has been searched unsuccessfully for a suitable
station. It begins by setting INDST, used by LOOK L. (Note:
INDST is actually a constant pointing to the westernmo--st strip in
bulk data, but cannot be computed at compile time). One of five
sections of code is then executed depending on the value of ZONCTR.
(ZONCTRhas an entry value of 0 to 4 -- hereinafter referred to as
_the value').

If the value is I, we are in that 2 degree strip which
includes the aircraft position. If another strip exists to the
east, NAV ADDR is set to point to the first navaid in that strip.
If not (the location at ZONPTR+ 8 is zero), ZONCTRis set to 3 (to
ensure that a subsequent entry doesn't repeat the attempt to move
east) and LOOK_L is called to attempt to move to the first strip to
the west.

If the value is 2, processing proceeds identically, except
that the initial attempt is to move to the second strip to the east
of present position.

If the value is 3, LOOK_L is called to attempt to move to the
first strip to the west.

If the value is 4, the second strip to the west is chosen if
one exists. Otherwise EXT RANGE is called to extend the search
range.

GLOBAL INPUTS: IBPTR

GLOBAL OUTPUTS: None



134

MODULENAME:
FILE NAME:
PROCESS:

LOOK L (Select Next Strip to West)
TUNXTK.FOR
SLOW

PURPOSE: To extend the station search to the first longitudinal
strip to the West, if one exists.

CALLED BY: CHOOSESTRIP
CALLING SEQUENCE: CALL LOOK_L(INDST)
CALLS TO: EXT_RANGE, GET_LONG

DESCRIPTION:
LOOK L sets NAV ADDRto point to the first navaid in the next

longitudinal strip to the west of aircraft present position if one

exists. If there is no next strip to the west (ZONPTR - 24 is less

than INDST), EXT RANGE is called to extend the search range by 40

nm.

GLOBAL INPUTS: None

GLOBAL OUTPUTS: None



135

MODULENAME:
FILE NAME:
PROCESS:

EXT RANGE (Extend Search Range)
TUNXTK.FOR
SLOW

PURPOSE: Extend search range for a cross-track station.

CALLED BY: BUMP_STA, CHOOSE_STRIP, LOOK_L, NXTSTA
CALLING SEQUENCE:CALL EXT RANGE
CALLS TO: GET LONG

DESCRIPTION:
EXT RANGE is called when all permissable longitudinal strips

have been searched unsuccessfully for a suitable navaid out to the
present search limit. The zone counter (ZONCTR) is zeroed,
resetting the zone to aircraft present longitude, NAV ADDR is set
to point to the first navaid in that strip (as indicated by ZONPTR)
and the search range limit (Z0NLIM) is increased by 40 nm. If this
increase results in ZONLIM being more than 200 nm, the search in
progress flag (CINPFL) is cleared, the search initialized flag
(XST_INIT) is cleared and ZONLIM is reset to 40 nm.

GLOBAL INPUTS: None

GLOBAL OUTPUTS: None



136

MODULENAME:
FILE NAME:
PROCESS:

TUNCK (Verify Station Geometry)
TUNCK.FOR

SLOW

PURPOSE: To verify the geometry of a cross-track station

CALLED BY: GEOM_CK, SEARCH_STA, XTK_MAN

CALLING SEQUENCE: CALL TUNCK(STA_LAT, STA_LON, STA_ALT, RANGE, TB)

CALLS TO: SQRT

DESCRIPTION:

Processing begins by presetting _good geometry' status (TB =

false) and computing the delta lat (DTLAT) and delta lon (DTLON)
between the aircraft and the selected cross station. DTLON is

immediately multiplied by cos(LAT) to account for the varying width

of a degree of longitude. Analogues of the sine and cosine of the

angle between the stations (SINW, COSW) are then computed by cross

multiplying DTLAT and DTLON by the delta lat (DPHII) and ion

(DLAMI) between the aircraft and the path station computed by CRBSC

in HNAVSL. The following relations are implicit: The sine and

cosine of the bearing to the cross station are proportional to

DTLON and DTLAT, respectively. Similarly, the sine and cosine of

the bearing to the path station are proportional to DLAMI *

cos(LAT) and DPHII. Calling the bearing to the path station P, the

bearing to the cross station X and the angle between them (the

wedge angle) W, then

sin(W) = sin(P - X) = sin(P) cos(X) - cos(P) sin(X)

cos(W) = cos(P - X) = cos(P) cos(X) + sin(P) sin(X)

tan(W) = sin(W) / cos(W)

The minimum (primary) wedge angle between stations for a good

position estimate is 30 degrees. I.e, between 30 and 150 degrees

left or right. This requirement is met if the tangent of the

primary angle (abs(sin(W) / abs(cos(W)) ) is greater than the

tangent of 30 degrees (0.57735). If this criteria is not met, TB

is set true.

If the above test passes, processing continues by computing

the approximate distance to the cross station (DIST), and the

approximate effective range of the station (RANGE).

DIST = 60.0 * sqrt (DTLAT 2 + DTLON 2)

RANGE = 1.23 * sqrt (ALTCOR- STA_ALT)

If the distance is greater than the specified search range

(MAXRG) or greater than the effective range (RANGE), TB is set

true.

GLOBAL INPUTS: ALTCOR, SLLAT, SLLON

GLOBAL OUTPUTS: None



137

MODULENAME:

FILE NAME:

PROCESS:

GMSG (Generate Message)

GMSG.FOR

SLOW

PURPOSE: To output messages to the system test panel and onboard

line printer.

CALLED BY: SLOW

CALLING SEQUENCE: CALL GMSG

CALLS TO: LIB$SIGNAL

DESCRIPTION:

GMSG drives the system test panel display and indicators with

data stored in a message buffer. This message buffer is also used

to echo each message that goes to the system test panel on the

printer as well. The length of the buffer (in bytes) is stored in

WRDCNT. The message length determines whether there is a text

message to output, or only lights and switches to turn on or off.

A value of four in WRDCNT denotes the latter, otherwise a message

is output to the system test panel and the onboard printer. These

output operations are designed to occur during separate iterations

of GMSG to minimize the occurrence of I/O interrupts which might

affect the foreground timing. The status of these I/O operations

is tested during each iteration and, if an exception is detected,

an error message is displayed on the system console device.

GLOBAL INPUTS: IOACT, MSBUF, MSGST, WRDCNT

GLOBAL OUTPUTS: IOACT, WRDCNT



138

MODULENAME:
FILE NAME:
PROCESS:

MESG (Error Message Tables)
MESG.MAR
SLOW

PURPOSE: Repository for ASCII error messages.

CALLED BY: Non executable
CALLING SEQUENCE:Not called
CALLS TO: None

DESCRIPTION:
MESG contains a pool of ASCII error messages that are

displayed on the system test panel.

GLOBAL INPUTS: N/A

GLOBAL OUTPUTS: N/A



139

MODULENAME:
FI LE NAME:
PROCESS:

SNAPOUT(Snap Output Processing)
SNAPOUT.FOR
SLOW

PURPOSE: To format and print snapshot recordings on the aircraft
line printer.

CALLED BY: SLOW
CALLING SEQUENCE:CALL SNAPOUT
CALLS TO: None

DESCRIPTION:
SNAPOUTprints out snap data whenever new snapshots have been

added to the snap buffer (SNAPBUF(n).SDATA). The global counter
SPTR is set by the SNAP routine when a new snap is stored. The
global counter RPTR is set by the SNAPOUTroutine when the snap is
printed. If the two numbers do not agree, then one or more snap
lists remain to be printed and SLOWmakes the call to SNAPOUT.
Both counters are modulo-4. SNAPOUTprints one list per call.

If a snap is to be printed, SNAPOUTfirst increments the read
counter RPTR and then formats a header line with the snap number,
the name, the time, and the snap criteria, storing these in the
output buffer OBUF. It then takes one entry at a time from the
snap buffer, checks the form (integer, real or boolean), performs
the necessary conversions, and stores the ASCII value in the output
buffer. It repeats this for 5 entries per line, for 3 lines, or
until the buffer is empty.

Because SNAPOUTrequires a change in the I/0 device, printing

must be synchronized at the executive level. The flag IOACT is

used to signal that I/O is in progress and the output is then

initiated through a call to SYS$QIO. Subroutine SNAST, specified

in the QIO statement, clears IOACT when the I/O is complete.

GLOBAL INPUTS: RPTR, SNAPBUF

GLOBAL OUTPUTS: IOACT, RPTR



140

Section 6.0 FLIGHT CONTROLS

FLIGHT CONTROLSOVERVIEW

The Flight Controls routines provide for control of the ATOPS

aircraft in all coupled flight modes. This includes an Attitude

Control Wheel Steering mode (pitch and roll only) for the Forward

Flight Deck, a Manual Electric mode (pitch, roll and yaw) for the

Research (Aft) Flight Deck (BED) and a number of computer aided

modes offering pitch, roll, yaw and speed control from the Research

Flight Deck. These include Attitude Control Wheel Steering (ACWS),

Velocity Control Steering (VCWS) and a variety of autopilot modes

ranging from track and flight path angle hold to 4D autopilot,

through full autoland. Interface with the Mode Select Panel (MSP)

for flight mode selection, direct control of selected track, flight

path angle (or altitude held) and airspeed, or selection of 2-, 3-

or 4D guidance is provided by these routines. The computation of

of aircraft state commands based on the Flight Management

computation of errors from a predefined path (which may include

speed and/or time constraints) is also computed here.

Flight Controls (FC) logic checks for validity of outputs from

the Flight Management process, and provides for minimum operational

capability from the RFD even in the absence of Flight Management

outputs. Some of the signals required to drive the Navigation

Display and Primary Flight Display are either computed primarily by

the FC software or are conditionally computed when validity of the

Flight Management outputs cannot be verified.



141

MODULENAME:
FILE NAME:
PROCESS:

DATSEL (Flight Controls Data Selection)
DATSEL.FOR

FCFAST

PURPOSE: To select input data for use by the Flight Controls
Process (FCFAST).

CALLED BY: FCFAST

CALLING SEQUENCE: CALL DATSEL

CALLS TO: ANGL, ATAN2, SQRT

DESCRIPTION:

This module selectively overwrites those signals computed by

HNAVFS in the Flight Management process, based upon the discretes

INAVV (IRS Navigation Valid) and NCUVAL (Navigation Computations
Valid).

If INAVV is true and NCUVAL is false, then LAT, LON, ALTCOR,

HDCF, HDGTRU, HDD, VN, VE, GS, VGSDOT and XTACC are overwritten

with the equivalent raw IRS inputs: LATINS, LONINS, IRSALT,

IRSHDOT, THDG, HDDINS, VNINS, VEINS, GSINS, ATKINS, and XTKINS,

respectively. GUID2D and MLSMOD are forced false as they cannot

legitimately be true if NCUVAL is false. The following computed

values are then overwritten with values computed from the raw

inputs:

NAV64K = (GS >= 64)

TASFPS = TAS KTOFPS

GSFPS = GS KTOFPS

GSFPS2 = GSFPS GSFPS

DFTANG = ANGL(TK - THDG)

TKMAG = ANGL(TK - MAGVAR)

If NAV64K then

TK = atan (VE, VN)

GAMMA = RTOD HDCF / GSFPS

TASGS = sqrt (TASFPS 2 - HDOT 2)

else

TK = THDG

GAMMA = 0.0

TASGS = TAS

endif

Finally, HRAD is calculated by compensating the radar

altimeter input (RADALT) for pitch angle,

HRAD = RADALT - 0.38 (PITCH - 2.0)

and runway heading error (DLPSI) and cross runway velocity (XTVEL)

are calculated if a destination runway has been selected.



142

If (AIRPTS (2, 3) _ 0) then

DLPSI = ANGL(HDGTRU - RWYHDG)

XTVEL = KTOFPS (cos (RWYHDG) VEINS - sin (RWYHDG) VNINS)
else

DLPSI = -180.

XTVEL = 0.0

endif

In the above, DLPSI is set to -180 when no runway has been

selected to prevent LAND mode from engaging erroneously. Also, in

the above computation of TASGS, HDCF should be used instead of

HDOT.

GLOBAL INPUTS: AIRPTS, ATKINS, COSRH, GSINS, HDDINS, HDGTRU,

INAVV, IRSALT, IRSHDOT, LATINS, LONINS, MAGVAR, NCUVAL,

PITCH, RADALT, RWYHDG, SINRH, TAS, THDG, VEINS, VNINS,
XTKINS

GLOBAL OUTPUTS: ALTCOR, DFTANG, DLPSI, GAMMA, GS, GSFPS, GSFPS2,

GUID2D, HDCF, HDD, HDGTRU, HRAD, LAT, LON, MLSMOD,

NAV64K, TASFPS, TASGS TK, TKMAG, VE, VGSDOT, VN, XTACC,
XTVEL



143

MODULENAME:
FILE NAME:
PROCESS:

MSPLGC (Mode Select Panel Logic)
MSPLGC.FOR
FCFAST

PURPOSE: To process inputs from the Control Mode Panel (CMP -
previously known as the MSP) and to perform the logic
associated with selection of guidance mode.

CALLED BY: FCFAST
CALLING SEQUENCE:CALL MSPLGC
CALLS TO: ANGL, KNOBER, UNPK

DESCRIPTION:
MSPLGC consists of two fundamental parts. The first part

handles inputs from the CMPknobs (using the subroutine KNOBER) and
buttons (less the bottom-left four which are handled by MLOG). The
second section contains the logic used to calculate which guidance
modes are required. These modes are then output to the CMP and the
rest of the system via the set of Booleans outlined in the

description of MSPRO. This logic is outlined below.

The buttons on the CMP each contain lamps which may take a

maximum of four possible states: off (unlit), or illuminated blue,

amber or green. If unlit, the mode is not active; if green, the

mode is providing guidance (engaged) and, if amber, the mode is

armed. Blue indicates a preselect condition for those buttons

which have an associated knob (CAS, ALT, FPA, TKA) or a *not

available' situation for the remaining guidance select buttons

(LAND, HOR PATH, VERT PATH, TIME PATH). In the control wheel

steering (CWS) modes, a maximum of one guidance mode in each axis

may be engaged and one may be armed. (LAND provides guidance in

both axes). In AUTO mode, exactly one guidance mode must be

engaged in each axis and one may be armed. If the engaged mode is

deselected or fails, the system will revert to VCWS. If both an

engaged and an armed condition exists, the following priorities

prevail (descending order):

Horizontal guidance - LAND, HOR PATH, TKA SEL;

Vertical guidance - LAND, VERT PATH, ALT ENG, FPA SEL;

Speed guidance - TIME PATH, CAS ENG.

The four knob/button pairs also have an associated numeric

readout. If the lamp is unlit, the readout indicates the current

value of airspeed, altitude, flight path angle or track angle,

respectively. If lit, the selected value is displayed. Turning

a knob adjusts the displayed value for the associated parameter

and, if the button was previously unlit, causes the blue lamp to be

lit for eight seconds. If the button is then pressed within this

time, the mode is armed or engaged (as appropriate) with the

preselected value retained. If not, the blue light goes off and

the display returns to current value. CAS is unique in that the

preselect state results in an amber lamp (which does not auto-



144

extinguish). Successive pushes of the CAS ENG button causes the
mode to toggle between preselect and engage (green). To extinguish
the lamp / return to disengaged state, the autothrottle disconnect

button on the throttle handles (ATDC) must be pressed.

Of the remaining buttons (the buttons on the bottom row), the

first three (VEL CWS, ATT CWS, AUTO) are handled entirely by

procedure MLOG and are mutually exclusive. I.e, at most one will

be illuminated green and the remainder will be off. The next

(LAND) is also handled by MLOG, but interacts with and shares lamp

color logic with the remaining three mode select buttons (HOR PATH,

VERT PATH, TIME PATH), which are handled by MSPLGC. If the LAND

button is depressed when unlit, the blue light will be illuminated

for eight seconds if the minimum requirements for LAND mode are not

met. Otherwise, the amber (armed) light will be engaged until the

engage criteria are met, at which time the green light will be lit

and the amber light extinguished. If depressed when amber or

green, it will return to the unlit state. The remaining three

buttons are serially dependent: i.e, HOR PATH engaged is a

prerequisite for VERT PATH, which is itself a prerequisite for TIME

path. However, pressing TIME PATH button when HOR PATH is neither

armed nor engaged will cause all three modes to become armed or

engaged (as appropriate) if the criteria are met. If not, TIME

PATH will be lit blue. Similarly, VERT PATH will either arm/engage

both HOR PATH and VERT PATH or turn blue trying. Additional

logical requirements exist which should become clear as the

mechanizing logic is explained.
The first two lines of code are remnants of the data link

experiment. In that experiment, it was possible to transmit new

altitudes and headings (among other things) from the ground, and

code in process HDL would place the values directly in the

appropriate summer (ALTSUM and TKASUM, for the above), then set the

preselect Boolean (PSTALT or PSTTKA) to retain the value. The

lines in question check for PSTALT or PSTTKA true with the matching

_blue light' counter (RAKNOB, RTKNOB) zero. If this situation

exists, the appropriate counter is set to 161 to cause the blue

light to stay on for eight seconds to give the pilot time to accept

the input by pressing ALTSEL or TKSEL. The next DO loop decrements

all counters that are non-zero (RCKNOB, RAKNOB, RFKNOB, RTKNOB,

D2CTR, D3CTR, D4CTR, ALTIN). Next the transfer Booleans in the

array BUTNS (DACWS, D2D, D3D, D4D, DIASEL, DALSEL, DFPSEL, DTKSEL)

are cleared preparatory to reading the new button data, and the

local copy of the mode reversion flag (MODREV) is cleared.

If COLDST is true, indicating system initialization in

progress, OLDTOG is set equal to the present value of TOGGLE (the

CMP word which indicates which button or knob to check) and

processing ends. Otherwise processing continues by taking the

exclusive or (saved in ITMP) of TOGGLE and OLDTOG. ITMP is then

used to determine what to do next.

If ITMP equals I, the altitude knob was turned. Procedure

KNOBER is called to process the knob input. The formal parameters

specify the input word to process, the high and low speed scale

factors, the location of the return value and of the counter

(timer) for the knob. KNOBER returns the selected delta value and



145

sets RAKNOB to 160 if a valid input was found. (Otherwise zeros

are returned. See KNOBER documentation.) Subsequent inline code

conditionally adds the delta value to the previous value of ALTSUM.

If the previous value was not an even multiple of 100 feet, ALTSUM

is set to the next nearest 100 foot value in the direction the knob

was turned. Otherwise it is set to the sum of ALTSUM and the delta

value, limited to a minimum of zero and a maximum of 35000 feet

(MAXALT). Additionally, the altitude attained flag (ALTATT) is

cleared and the variable ALTIN is set to 30. When ALTIN is non-

zero, logic in procedure VERCMD applies an easy-on to the vertical

acceleration command.

If ITMP equals 2, the flight path angle knob was turned.

KNOBER is called and inline code adds the delta to FPASUM, limiting

the result to +/- GAMLIM (the maximum allowable flight path angle,

which is flight mode dependent). ALTIN is also set to 30 when this
knob is turned.

If ITMP equals 4, the track angle knob was turned. KNOBER is

called and TKASUM is updated using the ANGL function, which returns

an angle with a maximum value of +/- 180 degrees. The variable

TRKIN is also set to 60, which causes procedure LATCMD to provide

an easy-on to the bank angle command. It also causes procedure

LATRL to clear the TKSYNC discrete, which re-activates the curved

trend vector on the PFD. Procedure MSPRO sets a bit in the FCFLGS

word which forces the selected track display to be enabled on the

PFD. MSPRO decrements TRKIN.

If ITMP equals 8, the air speed knob was turned. KNOBER is

called and IASSUM is updated and limited to a minimum of the

reference airspeed (IASREF) and a maximum of 350 knots (MAXIAS).

IASREF is pilot selected via the CDU INIT page.

If ITMP equals 16, a button was pushed. Procedure UNPK is

called to unpack the CMP select discrete word (CMPMSD) into the

temporary Boolean array, BUTNS. The following DO loop sets the

appropriate counter to 160 if HOR PATH (D2D), VERT PATH (D3D) or

TIME PATH (D4D) was pressed. If the selected mode cannot be armed

or engaged, this will result in the eight second blue light

mentioned above. The following logic forces D3D if D4D is selected

and VERARM is false (VERT PATH neither armed nor engaged), then

forces D2D if D3D was selected (or forced) and HORARM and LOCE are

both false.

The next section implements the actual guidance selection

logic. But first a few more preliminary equations. LOFF is set

whenever an engaged lateral guidance mode is deselected; i.e, if

TKA SEL is pressed when track select is engaged, HOR PATH is

pressed when horizontal path guidance is engaged or LAND is pressed

when land mode is engaged. VOFF is set whenever an engaged

vertical guidance mode is deselected: i.e, if ALT ENG is pressed

when altitude hold is engaged, FPA SEL is pressed when flight path

angle is engaged or VERT PATH is pressed when vertical path is

engaged. Auto Select (AUTOS) is then forced when AUTOE is true and

either LOFF or VOFF becomes true. This causes logic in MLOG to

demode from AUTO to the next highest available mode (usually VCWS).

Also, Land Select (LANDS) is forced if Land Ready (LANDR) is true

and either HOR PATH or TKA SEL is selected. This causes MLOG to



146

turn off LANDR and all other land mode flags. If land mode was
previously engaged, this also causes a demode from AUTO mode (if
engaged).

The next section of logic ensures retention of path guidance
engage during modification of a path. When a path is modified or
a new path is entered, the horizontal and vertical path guidance
available Booleans (GUID2D and GUID3D) are temporarily set false.
This is necessary to ensure proper reinitialization of the
horizontal/vertical guidance equations in procedure HVGUID, but
would normally cause loss of both horizontal and vertical path arm
(which is neither necessary nor desirable). SETGDis set non-zero
during a path update sequence by procedure EXECUTE. The local
Boolean NEWPLN is set true when SETGD is non-zero. The local
Booleans GD2D and GD3D are then set to the OR of NEWPLNand GUID2D
or GUID3D, respectively.

The default logic causes HORPTHto engage immediately when
horizontal path is selected, regardless of distance from the path.
However if the pilot prefers to set his own approach angle, he may
do so by turning the track select knob after pressing HORPATH iff
the distance from the path is greater than the mandatory engage
distance (BCFLAG = XTK > XTKLIM). Alternatively, the logic can be
configured to never set HORPTHwhen BCFLAG is true by setting the
global Boolean SPOBI. This is controlled by the local Boolean B,
defined as follows:

B = (B • HORARM• AUTOS) + (RTKNOB= 160) + SPOBI

The following equations are then evaluated:

Horizontal Path Select:

IF (HOKABM) D2CTR = 0

HOKARM= GD2D • ((D2D • HORARM)+ (HOKARM•

NOT(DTKSEL + D2D + LOCE + (LANDS • HORPTH)))

Where: DTKSEL is a momentary Boolean set when the
TKA SEL button is pressed;

D2D is a momentary Boolean set when the
HOR PATH button is pressed.

HORBLU= (D2CTR > 0) • HORARM

HORPTH = HORARM • GUID2D • BCFLAG

When the end of a 3D path is reached, or when land mode is

selected and the localizer is engaged but the glideslope is not

engaged (vertical path guidance is still armed or engaged) when the

aircraft descends below 500 feet AGL, altitude hold is forced by

the following logic:

if (VERARM. (GD3D + (PTR2D = i) +



(((ALTCOR - RYELEV) < 500)
VERARM= .FALSE.
ALTARM = .TRUE.

MODREV = .TRUE.

endif

Vertical Path Select:

if (VERARM) D3CTR = 0

VERARM = GD3D • (HORARM + LOCE)

Where:

• LOCE)))

• ((D3D • VERARM) +

(VERARM • NOT (D3D + DALSEL + DFPSEL + GSENG +

(LANDS • VERPTH))))

DALSEL is a momentary Boolean set when the

ALT ENG button is pressed;

DFPSEL is a momentary Boolean set when the

FPA SEL button is pressed;

D3D is a momentary Boolean set when the

VER PATH button is pressed.

VERBLU = (D3CTR > 0) • VERARM

VERPTH = VERARM • (HORPTH + LOCE) • GUID3D • VBCFLG

Where: VBCFLG is the vertical path _be careful' flag.

Time Path Select:

IF (TIMARM) D4CTR = 0

TIMARM = VERARM • (SDC > IASREF) • (CAS > IASREF) •

Where:

147

((D4D • TIMARM) + (TIMARM • (D4D + DIASEL + ATDC)))

D4D is a momentary Boolean set when the

TIME PATH button is pressed;

DIASEL is a momentary Boolean set when the

CAS ENG button is pressed;

ATDC is a Boolean set when the autothrottle

disconnect button is pressed;

SDC is the speed command calculated in

HVGUID or TGUID.



148

TIMBLU = (D4CTR > 0) • TIMARM

TIMPTH = TIMARM • VERPTH • SPDLMT

Where: SPDLMT is a Boolean set when the present CAS

is either above or below the limits for the

present flap setting.

if (TIMPTH ° PTIMPT) TIMARM = ATE

Where: PTIMPT is the previous interation's value of

TIMPTH;

ATE is the auto-throttle engage discrete set

by procedure ATHCL.

Airspeed hold Select:

IF (ATDC) RCKNOB = 0

IASARM = ATDC ° (((RCKNOB = 160) + IASARM) • IASSEL) +

(IASSEL • DIASEL))

Where: RCKNOB is set when the CAS knob is turned;

D4D is a momentary Boolean set when the

TIME PATH button is pressed;

DIASEL is a momentary Boolean set when the

CAS ENG button is pressed.

IASSEL = ATDC • ((IASSEL • ATE •

Where:

(DIASEL + TIMPTH)) +

(DIASEL • IASSEL) +

(PTIMPT • (DIASEL + TIMPTH + IASSEL)))

ATDC is the autothrottle disconnect flag:

PTIMPT is TIMPTH from the previous frame (this

logic causes reversion from TIMPTH to IASSEL).

Altitude Select:

PSTALT = (RAKNOB > 0) • ALTARM

Where: RAKNOB is set to 160 when the altitude

knob is turned.

ALTARM = (DALSEL • ALTARM) + (ALTARM • .NOT. (DALSEL + DFPSEL

+ GSENG + VERPTH + ((LANDS + D3D) • ALTSEL)))



149

IF (ALTARM) RAKNOB = 0

The following logic is required

i) to ensure ALTSEL is cleared when demoding from AGCSE

(MODEX < 4),

2) to ensure ALTSEL is cleared when a new altitude is selected

which is beyond the engage limits and

3) to invert the priority of ALTSEL and VERPTH when a new

altitude select input is made.

if (MODEX < 4) ALTSEL = .FALSE.

if (ALTSEL • (iDELALTI > 1200)) THEN

DALSEL = .TRUE.

IF (VERPTH) VERARM = .FALSE.

endif

ALTSEL = ALTARM • ((ALTSEL • (IDELALTI < 1200)) +

(iDELALT{ < 52) +

((DELALT >= 0) • (DELALT < 14*HDCF)) +

((DELALT < 0) • (DELALT > 14*HDCF))))

Where DELALT is altitude select/hold error and

HDCF is filtered vertical velocity.

The following logic sets the approach speed to either a vertical

path or a selected altitude at the time that ALT ENG or VERT PATH

is selected.

if ((DALSEL • ALTARM • ALTSEL) + (D3D °VERARM ° VERPTH)) then

if (D3D) then

TMPI = HER

TMP2 = PFPA

else

TMPI = DELALT

TMP2 = ZERO

endif

if (HDCF sign(l, TMPI) <= 8.333)

TEMP = 8.333

else

TEMP = IHDCFI

endif

FPASUM = TMP2 + DTOR (sign(TEMP, TMPI) / max(GSFPS, 170))

PFPSEL = .TRUE.

ALTIN = 30

endif



150

Whe re : HER is the vertical path error in feet;

PFPA is the vertical path flight path angle in

degrees;

DELALT is the altitude error in feet;

ZERO is the altitude hold nominal flight path angle;

8.333 is the desired approach velocity (500 fpm).

PFPSEL is set to prevent a mode reversion alarm when

reverting from ALTSEL to FPA SEL and VER ARM.

(As the code is written, this demode will never

occur, but it should.)

Note: in the above, the segment 3D flight path angle

should be used vice the programmed flight path angle (PFPA).

Flight Path Angle Select:

PSTFPA = (RFKNOB > 0) • (FPASEL + DFPSEL)

Where: RFKNOB is set to 160 when the FPA knob is turned;

DFPSEL is a momentary Boolean set when the

FPA SEL button is pushed.

FPASEL = (DFPSEL • FPASEL) + ((AUTOE • VOFF) +

((VERARM + ALTARM + (FPASEL • DFPSEL)) • AUTOE) °

(VERPTH + ALTSEL + GSENG)

Track Angle Select:

PSTTKA = (RTKNOB > 0) ° (TKSEL + DTKSEL)

Where: RTKNOB is set to 160 whentrack knob is turned;

(FPA)

DTKSEL is a momentary Boolean set when the TKA SEL

button is pressed.

TKSEL = (DTKSEL • TKSEL) + (((AUTOE • LOFF) +

(((D2D • HORARM) + LANDS + (TKSEL • DTKSEL)) •

AUTOE)) • (LOCE + HORPTH))

Where: D2D is a momentary Boolean set when the

HOR PATH button is pressed.

Final processing for this procedure sets the mode reversion

flag (MDWARN) whenever a mode reversion occurs not deliberately

initiated by the pilot. MDWARN is set for one iteration to cause

an audible alarm to sound in the research flight deck. The present



151

value of the mode select discretes are then loaded into the _past

value' discretes, used primarily to mechanize the MDWARN logic.

This routine shares common local data with procedures MSPRO,
LATCMD and VERCMD.

GLOBAL INPUTS: ACWSS, ALTARM, ALTCOR, ALTSEL, ALTSUM, ATDC, ATE,

AUTOS, AUTOE, BCFLAG, CAS, CMPALT, CMPFPA, CMPIAS, CMPMSD,

CMPTKA, COLDST, DELALT, FPASEL, FPASUM, GAMLIM, GAS,

GSENG, GSFPS, GUID2D, GUID3D, HDCF, HER, HORARM, HORPTH,

IASREF, IASSEL, IASSUM, LANDR, LANDS, LOCE, PFPA, PSTALT,

PSTTKA, PTR2D, RYELEV, SDC, SETGD, SPDLMT, SPOBI, TIMARM,

TKASUM, TKSEL, TOGGLE, VBCFLG, VCWSS, VERARM, VERPTH

GLOBAL OUTPUTS: ALTARM, ALTATT, ALTSEL, ALTSUM, D2D, D3D, DALSEL,

DFPSEL, DIASEL, DTKSEL, FPASEL, FPASUM, HORARM, HORBLU,

HORPTH, IASARM, IASSEL, IASSUM, LANDS, MDWAKN, PSTALT,

PSTFPA, PSTTKA, TIMARM, TIMBLU, TIMPTH, TKASUM, TKSEL,

TRKIN, VERARM, VERBLU, VERPTH



152

MODULENAME:
FILE NAME:
PROCESS:

KNOBER (MSP Knob Processing)
KNOBER.MAR
FCFAST

PURPOSE: To convert the bit pattern in a Control Mode Panel (CMP)
input word to a floating point value.

CALLED BY: MSPLGC
CALLING SEQUENCE:CALL KNOBER(PI, P2, P3, P4, P5)

Where: P1 - CMP input
P2 - high increment value
P3 - low increment value
P4 - floating point output
P5 - knob count variable

CALLS TO: None

DESCRIPTION:
This subroutine is called by MSPLGCto convert a control mode

panel knob input word into a floating point delta value. Prior to
calling this routine, a parity check is performed (by procedure
IOFLL in the HDL process) on each knob input value. If an error is
detected, the input value is cleared (set to zero). KNOBERchecks
this input value and if it is zero, control is immediately returned
to the caller.

The knob input word is examined to determine if the high-speed

or low-speed gain should be used to compute the delta value. Then

a test is made to determine if the input value is positive or

negative. If it is negative, the sign bit is extended through the

entire word for ease of computation and to guard against extraneous

inputs. If the knob input word is positive, all bits are cleared

except those in the actual count field. The input value is then

multiplied by the appropriate gain and the knob count variable is

set to 160 decimal, which serves as the eight-second timer for the

preselect (blue light) condition when a knob is turned.

GLOBAL INPUTS: NONE

GLOBAL OUTPUTS: NONE



153

MODULENAME:
FILE NAME:
PROCESS:

MSPRO (Mode Select Panel Readout)
MSPRO.MAR
FCFAST

PURPOSE: Commands the Control Mode Panel (CMP) to light the
appropriate mode lights and to display air speed,
altitude, flight path angle, and track angle.

CALLED BY: FCFAST
CALLING SEQUENCE:CALL MSPRO
CALLS TO: NONE

DESCRIPTION:
Each time this routine is called, all lamps are initially

turned off. A test is then made to determine if a new airplane
track has been selected. If so (TRKIN not equal 0), TRKIN is
decremented and the track pointer display flag is set (bit 12 of
LFCFLG). In the first half of MSPROthe following booleans are
checked and, if true, the corresponding light is lit. These
booleans are packed into two words (DSTOMP, DSTOMP+2) for output.
A low bit turns the light on and a high bit turns it off (active

low).

DSTOMP:

BIT BOOLEAN MEANING LAMP COLOR

8 PSTTKA preselect Track Angle mode blue

9 HORBLU Horizontal Path unavailable blue

I0 TKSEL Track Angle mode engaged green

II PSTFPA Preselect Flight Path Angle blue

12 TIMPTH Speed mode/Time Path(4D) engaged green

13 FPASEL Flight Path Angle mode engaged green

14 PSTALT Preselect Altitude hold blue

15 ALTARM Altitude hold mode Armed amber

DSTOMP+2:

0 ALTSEL altitude hold mode engaged green

1 IASARM preselect calibrated air speed amber

2 VERBLU vertical path unavailable blue

3 IASSEL calibrated air speed engaged green

4 TIMBLU time path mode (4D) unavailable blue

5 TIMARM time path mode (4D) armed amber

6 VERARM vertical path mode (3D) armed amber

7 VERPTH vertical path mode (3D) engaged green

8 HORARM horizontal path mode (2D) armed amber

9 HORPTH horizontal path mode (2D) engaged green

The second half of MSPRO calculates the correct values to be

output to the four display windows on the CMP. These windows

display one of three possible values for CAS, ALTITUDE, FPA, and

TKA. The value displayed is either the preselected value (if in



154

preselect mode), the selected value (if mode is engaged), or the
actual value (if mode is neither preselected or engaged).

GLOBAL INPUTS: ALTARM, ALTSEL, ALTSUM, FPASEL, FPASUM, GUID4D,
HER, HORARM, HORPTH, IASSEL, IASSUM, MAGVAR, PSTALT,
PSTFPA, PSTIAS, PSTTKA, TIMARM, TIMPTH, TKASUM, TKE,
TKASEL, TRKIN, VERARM, VERPTH, XTK

GLOBAL OUTPUTS:
TRKIN

ALTOMP, ASTOMP, DSTOMP, FCFLGS, FPTOMP, TKTOMP,



155

MODULENAME:
FILE NAME:
PROCESS:

MLOG (Mode Logic)
MLOG.FOR
FCFAST

PURPOSE: To determine and control the flight mode for operation of
the Flight Controls programs.

CALLED BY: FCFAST
CALLING SEQUENCE:CALL MLOG
CALLS TO: ANGL, DETNT

DESCRIPTION:
Mode Logic (MLOG)determines and selects a flight control mode

under the Advanced Guidance and Control System (AGCS). It first
checks the system run status and terminates if in HOLD Mode,
otherwise, processing continues. If on initial entry neither RUN
nor HOLDmode is selected, IC mode is forced. The first of the two
packed discrete words sent to displays (FCFLGS) is then loaded from
the local copy (LFCFLG) built during the previous iteration. (Only
one bit is used in the second word, so no intermediate word is
required). All but the Displays Lateral Beam Sensed (DLBS) and
Vertical Beam Sensed (DVBS) bits are then cleared from LFCFLG and
the MLSVLD and MLSMODbits are set as appropriate. As the flight
mode and submode is selected, the appropriate bit is set in LFCFLG.
The FCFLGS words are sent to the Displays computer where they are
used to display the flight mode on the Primary Flight Display.
(For a complete description of the bit usage in FCFLGS see
DISNAV. INC).

The next section of code determines the source of land
guidance signals. Possibilities are ILS, ILS simulated from MLS,
ILS simulated from GPS, full MLS, and MLS simulated from GPS. The
discrete MLSM indicates that MLS-type signals are used for land
guidance, whether derived from MLS or GPS. MLSMOD(MLS in use for
navigation) indicates that MLS signals are also to be used for
Autoland, assuming the MLS Azimuth phase center bearing matches
runway heading for the selected runway. MLS, once selected, takes
precedence over GPS (GPNAV/GPLND) when GPS is selected for
navigation into the MLS coverage area. If MLSM is true, MSW6and
MSWI (indicating certain additional MLS or GPS derived signals are

to be used for approach and flare, respectively) are set from bits

in the MLS configuration word (MCONF), and height above the

touchdown zone (HTDZ) is set from MLS altitude (ZHAT) . Otherwise,

MSWI and MSW6 are cleared and HTDZ is set to radar altitude (HRAD).

If MLSM is false, ILS-type capture and guidance are in effect,

but the signal source must still be selected. The default is

standard ILS, and LOCDEV and GSDEV are loaded from RLOCDV and

RGSDEV, respectively (the raw ILS inputs). If the simulated ILS

bit in MCONF (_0800'X) is set, LOCDEV and GSDEV are loaded from

GPSETA and GPSBTA if GPLND is true, and otherwise from MLS AZ and

ELI. (Note: the exact implementation of this logic, together with

the way GPLND is set by the CDU logic, results in improper

operation if both GPS and MLS are selected). Next, if LANDR or

LANDS is true, the selected ILS parameters are processed. If no



156

glideslope angle has been selected (this could only be true if no
runway is selected), a default value of 2.75 degrees is forced.
Prior to localizer ONCRS, localizer deviation is limited to 2.0
degrees of beam error. At ONCRS, localizer deviation has a
variable limit applied to it which is a function of altitude
(HTDZ). The limiter is used to reduce localizer deviation due to
external disturbances. The localizer variable limit function is:

LOCVL = .2 degrees,
.0006 H - .i degree,

for H < 500 feet.
for H => 500 feet.

Since the localizer beam converges as the transmitter is
approached, the localizer error signal needs to be attenuated as
distance from the localizer transmitter decreases in order to
maintain constant beam error per foot of deviation from beam
center. Since this distance is not known directly, altitude is
used as an analog of distance. The gain does not decrease below
.20 because localizer beam error is used for rollout guidance.
After gain programming, localizer deviation (ETAFT) is _per foot',
rather than _per degree'

The next section determines flight mode, beginning by saving
the previous value of MODEXin MODE2. For Advanced Guidance and
Control System (AGCS) engagement, either the FFD CWS or the AFD
Flight Controls paddle must be raised on the Control and Command
Panel in the forward flight deck. Successful engagement occurs
when several conditions are satisfied and the AGCS Engage Enable
flag (AEE) becomes true. To allow time for this logic the pilot
must hold the paddle up for at least 0.15 seconds. If AEE remains
false, the paddle will spring down to the off position. AEE true
is a precondition for all flight modes except PRENG.

If the DELAY variable is non-zero, it indicates that there was
a mode logic "dropout" and mode determination is delayed for four
iterations (200 Msec) to allow time for the engage paddle to drop.
If DELAY is zero, the next step is to select and scale the pilot
inputs (DCOL and DWHL): if Forward Flight Deck Select (FFDS) is
true, the forward flight deck inputs FCOL and FWHL are used; if
not, the Research Flight Deck (RFD) SAC inputs (SDCOL/SDWHL) are
selected if the sidearm controller is selected (SSTICK is true) and
the RFD brolley inputs (BDCOL/BDWHL- presently only available in
the EASILY lab) otherwise. Appropriate deadzone values for wheel
(WDZNE) and column (DZNE) are set at the same time. If FFDS is
false, subsequent logic increases these deadzone values by a factor
of 2.0 if LABFLG is true, as the _joy sticks' in the EASILY lab are
not very precise. If LABFLG is false, DZNE is still increased by
a factor of 1.5 if ALTHLD is true and WDZNEby a factor of 1.5 if
TRKHLD is true. (This applies to VCWSonly).

The logic for initial AEE determination is:

AFCSS = FFDS + AFDS (performed in hardware)

AEE = AFCSS • AFCSV • DETNT(I.5, 4.5) • FAIL2(AFCS)



157

Where: AFCSV
DETNT

= Advanced Flight Control System Valid
is a function which returns true if both DCOL &
DWHL, respectively, are within parameter limits.

And to remain valid:

AEE = AFCSS • AFCSV • FAIL2(AFCS)

At the time AEE becomes true, Computational Reset (CRSET) is
also set, which causes the second fail (Fail2) array to be cleared,
and DSPLF(AFCS) is cleared to ensure that any subsequent errors
will result in display of the _Mode Failure' message. The
appropriate DSPLF entry is also cleared at engagement of each of
the modes discussed below.

MODEOVERVIEW:

There are ten flight modes available. Pre-engage (PRENG) is
the default when no other mode can be sustained (AEE is false).
Forward Flight Deck Engage (FFDE) permits control wheel steering
(CWS) from the forward flight deck. All other modes pertain only
to the Research (aft) Flight Deck. Manual-Electric mode (MANEL)
permits manual control with minimum computer aid. The RFD CWS
modes permit control wheel steering with reference to attitude
(ACWS) or to the velocity vector (VCWS). The AUTO modes provide
automatic flight control for 3D guidance and the landing phase
through decrab (DECRB), FLARE, and rollout (RLOUT). In each case
where a mode is said to be set, the mode index word (MODEX) is set
to the appropriate value and a Boolean true is subsequently stored
in FLAGS(MODEX) to set the appropriate mode discrete.

FFDE (Forward Flight Deck Engage Mode):

FFDE is the only computer aided flight mode available to the
FFD. If AEE is true or becomes true according to the logic above,
then, if FFD is selected (FFDS is true) and the FFD 2nd fail flag
is clear, the FFD mode is engaged and further mode determination is
bypassed. The pilots then have CWS in the forward cockpit. The
logic for FFDE is:

FFDE = AEE • FFDS • FAIL2(FFD)

Once true FFDE remains true as long as AEE remains true, FAIL2(FFD)
remains false and no other mode is selected by pilot action.

AFT FLIGHT DECK MODES:

ACWSE (Attitude CWSEngaged Mode):

Attitude control wheel steering maintains whatever pitch and
roll attitude exists when the pilot returns the column and wheel to
detent. It is the default mode for the RFD when no other mode is
selected. ACWSEngage criteria is:



158

ACWSE = AEE • (ACWSS + ACWSE + (MODEX = 0)) • AGCSS •

Where:

FFDS + (ACWSE • ACWSS) + FAIL2 (ACWS) • DETNT (DZNE,WDZNE)

The flag AGCSS corresponds with the position

of the guarded MANEL/AGCSS toggle switch on

the flight controls pallet. If all conditions

except AGCSS are met, control goes to MANEL.

Once true, ACWSE remains true so long as AEE and AGCSS remains

true, FAIL2(ACWS) remains false and no other mode is selected.

VCWSE (Velocity CWS Engaged Mode):

This mode provides aided CWS with respect to the velocity

vector of the aircraft. The bank, track and flight path angles are

the autopilot hold references. VCWSE mode may be selected by

depressing the VEL CWS button on the Mode Control Panel (MCP). It
is also the primary default mode when AUTOE is lost, Autoland modes
are lost or Go-Around (GAS) is selected. The VCWSE mode is engaged

when:

1)

2)

3)

4)

5)

6)

VEL CWS is depressed (VCWSS true) when VCWSE
is false and AEE is true;

ATT CWS is depressed (ACWSS true) when ACWSE is true;

AUTO is depressed (AUTOS true) while in AUTO mode;

Go Around is commanded (GAS is true) with AEE true;

LANDE goes from true to false while in AUTO mode;

AUTO or LAND second fail occurs with AUTOE true.

Disengagement occurs when:

1)

2)

3)

4)

AEE is lost, causing reversion to PRENG;

ATT CWS or VEL CWS is depressed causing

reversion to ACWSE;

AUTO is depressed while in VCWSE Mode (AUTOE

becomes true);

VCWS second fail occurs, causing reversion to ACWSE.



159

AUTOE (AUTO Engage Mode):

The AUTO mode is a precondition for the higher modes:

AUTOLAND, DECRB, FLARE and RLOUT. It can be set true only by

pressing the AUTO button on the MCP. The initial criteria are:

AUTOE = AEE • AUTOS • AUTOE • DETNT(DZNE, WDZNE) •

FFDS + FAIL2(AUTO)

Where: DZNE = selected column dead zone;

WDZNE = selected wheel dead zone.

Subsequently, AUTOE mode will be disengaged if:

i) Another mode is selected;

2) GAE becomes true, causing reversion to VCWSE;

3) AEE becomes false, causing reversion to PRENG;

4) DETNT(0.78, 8.0) becomes false, causing reversion

to VCWSE;

5) AUTO is selected on the MCP when in AUTOE mode,

causing reversion to VCWSE;

6) An engaged guidance mode is deselected on the MCP

when in AUTO mode, causing reversion to VCWSE

(AUTOS is set by MSPLGC);

7) FAIL2(AUTO) becomes true, causing reversion to VCWSE;

6) LANDE becomes false, having been true, causing reversion

to VCWSE.

LANDE (Land Engage Mode):

There are presently two variants of LANDE: Autoland (AUTOE is

true) and LAND guidance for RFD CWS modes. The criteria for

engagement and retention of LANDE in CWS and AUTO differ. Common

processing is discussed first.

LANDR (LAND Ready) is set by:

LANDR = LANDS • LANDR • (LOCVLD + (MLSM • MLSMOD) + GPLNDV)

• (ILSZON + AUTOE) • FAIL2(LAND)

If LANDS does not result in LANDR, LNDCTR is set to 160, which

causes the blue light in the LAND select button to be lit for 8

seconds.



160

Once set, LANDR is cleared by:

I) Selecting LANDS when LANDR is true;

2) Selecting HORPTHor TKSEL when LANDR is true
(LANDS is set by MSPLGC);

3) MODEXbecoming less than 4 (ACWS);

4) ILSZON becoming false with AUTOEtrue;

5) FAIL2(LAND) becoming true;

6) GAE becoming true.

Criteria for engagement of the lateral and vertical beams are as
follows:

2) LOCA (Localizer Armed):

LOCA = LANDR • (MLSM + LOCVLD) • LOCE

Where: LOCE is set by LATCMD once LOCA is true and other

criteria are met.

3) GSARM (Glide Slope Armed):

GSARM = LANDR ° GSENABL ° (MLSM + GSVLD) ". GSENG

Where: GSENG is set by VERCMD once GSARM is true and other
criteria are met.

If AUTOE is false with LANDR true, LANDE is set as soon as

LOCE and GSENG are both true. Neither ONCRS nor GSTRK are allowed

to become true, so the higher land modes (DECRB, FLARE, RLOUT) are

never enabled. Also, glideslope guidance can be turned off

(GSENABL is set false) without loss of LANDE by selecting any other

vertical guidance mode (FPA, 3D or ALTSEL) or by loss of GSVLD.

Once GSENABL is cleared, it can only be reset by deselecting, then

re-selecting LAND. If AUTO is selected with LANDE true, LANDE,

LOCE and GSENG are cleared to permit a smooth automatic capture of

the path.

THE AUTOLAND MODES:

When AUTO mode is established, MLOG evaluates the criteria for

the Autoland mode. There are several submodes or conditions

required for Autoland control. These are outlined below:



161

4) LANDE (Land Engage Mode):

LANDE = LANDR • LOCE ° ONCRS• GSENG• GSTRK

Where: LOCE and ONCRSare set by LATCMD, and GSENG
and GSTRKare set by VERCMD.

When LAND mode is established, the autoland modes are entered
in sequence as their associated logic is satisfied. At 150 feet
altitude, DECRB mode is activated to align the aircraft with the
runway heading. At 42 feet (HTDZ) FLARE mode raises the nose of
the aircraft to establish a landing attitude. Finally, the Rollout
(RLOUT) mode maintains a course down the runway centerline as the
aircraft rolls to a stop. Each of these submodes is latched once
set until loss of LANDE. If Go-Around (GAS) is selected, the
autoland progression terminates and control reverts to VCWSEwith
a 2 degree fly-up bias. The logic for each mode follows:

i) DECRB (Decrab Mode) :

DECRB = LANDE • AUTOE • ((H < 150.) + DECRB)

2) FLARE (Flare Mode) :

FLARE criteria are evaluated in ELEVP once DECRB is true.

FLARE is set when (HRAD or HTDZ) becomes less than 42 ft.

3) RLOUT (Rollout Mode) :

RLOUT = DECRB • ((WSPIN • SQUAT) + RLOUT)

DEFAULT OR SPECIAL MODES:

MANEL (Manual-Electric Mode) :

This is not a normal flight mode. Rather, it is a _utility'

mode used for development and checkout. MANEL permits the RFD

pilot to hand-fly the aircraft with computer assistance limited to

_translation' of the wheel/column inputs. It is entered by raising

the MANEL toggle switch on the flight controls pallet. It will

then engage only if the AFD paddle is raised on the FFD Control &

Command panel and no other mode is selected. The toggle switch

enables MANEL in lieu of ACWS. If another mode is selected while

in MANEL mode, MANEL will terminate. It will also terminate if the

toggle is lowered when no other mode is selected. Control then

defaults to ACWS.

The MANEL enabling logic is:

MANEL = AEE • (ACWSS + (MODEX = 0)) • FFDS + AGCSS •

( (MANEL • FAIL2 (MANEL)) + DETNT (DZNE, WDZNE) )



162

PRENG (Pre-Engage Mode) :

This is the ultimate default when all else fails. It is

entered whenever conditions for "higher" modes are not satisfied or

when the engage paddles will not remain in the raised position.

In mode logic final processing, if no mode has been set, AEE

is cleared, MODEX is set to 1 (PRENG), and the variable DELAY is

set to four to allow the 200 Msec intermission for the engage

paddle to drop. Some or all of the mode discretes (FLAGS) are

cleared as appropriate and, if VCWS mode was not selected, the Go-

Around flag (GAE) is set false. Next, the FLAGS array is set to

reflect the selected mode. The basic flight mode flags (PRENG to

AUTOE) are mutually exclusive, so all are cleared, then one is set

per MODEX. The flags associated with LAND mode (LANDE thru ONCRS)
are cumulative and once set are not cleared until the conditions

required for LAND mode are lost. Last, the LBS and VBS flags are

cleared if no longer valid, and the Computational Reset (CRSET) and

Error Reset (ERSET) discretes are set upon exiting or entering

PRENG, respectively. CRSET clears the FAIL2 array and causes a

"RESET" message to be stored in the message buffer, and ERSET

clears the signal failure flags and the _Failure Read' and _Status

Alert' lamps on the System Test Panel.

BIT/ARRAY/INDEX ALIGNMENTS:

VALUE/INDEX MODEX FAIL2/DSPLF FLAGS

0 UNDEF

1 PRENG AFCS PRENG

2 FFDE FFD FFDE

3 MANEL MANEL MANEL

4 ACWS ACWS ACWSE

5 VCWS VCWS VCWSE

6 AUTO AUTO AUTOE

7 LAND LAND LANDE

8 DECRB AUTOTHROTTLE* DECRB

9 FLARE MLS* FLARE

i0 RLOUT RLOUT

ii --- LANDA

12 ...... LOCA

13 --- LOCE

14 ...... GSARM

15 ...... GSENG

16 ...... LANDR

17 GSTRK

18 ONCRS

Entries 8 & 9 of FAIL2/DSPLF are used to record

autothrottle and MLS failures, but this has no

relationship to MODEX or the flight modes.

GLOBAL INPUTS: ACWSS, ACWSE, AEE, AFCSS, AFCSV, AGCSS, ALTARM,



163

ALTHLD, AUTOE, AUTOS, AZ, AZ_BRG, BDCOL, BDWHL, DECRB,
DFPSEL, DLPSI, DSTAT, D3D, EL1, FAIL2, FCOL, FFDS, FLAGS,
FLARE, FPASEL, FWHL, GAE, GAS, GPINIT, GPLND, GPLNDV,
GPSBTA, GPSETA, GSA, GSENG, GSTRK, GSVLD, HGPIP, HOLD,
HOLDM, HRAD, IC, ILSZON, KDCOL, KDWHL, LABFLG, LANDE,
LANDR, LANDS, LFCFLG, LNDCTR, LOCE, LOCVLD, MANEL, MCONF,
MLSM, MLSMOD,MLSVLD, MODEX,MSWIT, ONCRS,PRENG, GSDEV,
RLMLS, RLOCDV, RLOUT, RUN, RUNM, RWYHDG,SDCOL, SDWHL,
SIMILS, SQUAT, SSTICK, TANGSA, TRKHLD, VCWSE, VCWSS,
VERARM, WSPIN, ZHAT

GLOBAL OUTPUTS: ACWSS, AEE, ALTARM, AUTOE, CRSET, DCOL, DSPLF,
DWHL, DZNE, ERSET, ETAFT, ETAVL, FCFLGS, FLAGS, FLAGWD,
GAE, GPGSDV, GPLOCD, GSARM, GSDEV, GSENG, HOLDM, HTDZ,
ICM, LANDA, LANDE, LANDR, LBS, LFCFLG, LNDBLU, LNDCTR,
LOCA, LOCDEV, LOCE, LOCVL, MLSM, MODE2, MODEX, MSWI,
MSW6, RUNM, TANGSA, VBS, VCWSE, VCWSS, WDZNE, YPROF



164

MODULENAME:
FILE NAME:
PROCESS:

DETNT (Logical Function)
MLOG.FOR
FCFAST

PURPOSE: To verify wheel and column in detent and to output an
advisory message if not.

CALLED BY: MLOG
CALLING SEQUENCE: IF DETNT(CoI_Imt, Whl_imt)
CALLS TO: FMTMG

DESCRIPTION:
The DETNT function compares DCOLto the formal parameter COLMT

and DWHLto WHLMT. If abs(DCOL) is greater than COLMT, the Boolean
DETNT is returned false and FMTMGis called to output the message
"COL OUT OF DETNT". If abs(DWHL) is greater than WHLMT, the
Boolean DETNT is returned false and FMTMGis called to output the
message "WHL OUT OF DETNT". If both are within limits, DETNT is
returned true.

GLOBAL INPUTS: DCOL, DWHL, TEST3A

GLOBAL OUTPUTS: None



165

MODULENAME:
FILE NAME:
PROCESS:

LATCMD (Lateral Path Command)
LATCMD.FOR
FCFAST

PURPOSE: To compute the Lateral Steering Command for AUTO flight
modes and VCWSTrack Hold mode.

CALLED BY: FCFAST
CALLING SEQUENCE:CALL LATCMD
CALLS TO: ANGL, ATAN, CMPF, SCOSD

DESCRIPTION:
This module computes the steering command (BACMD) for VCWS

Track Hold mode and AUTO mode Track select, 2D (HORPTH), and
localizer guidance. Horizontal path guidance is addressed first.
Processing begins by calculating the variable path tracking gain
(KALT - a misnomer) which may be used for both horizontal and
vertical path tracking once the path has been acquired. KALT
varies from 0.7 at 215 knots CAS to a maximum of 2.0 (in MLS mode)
at 140 knots. If GUID2D is false (2D guidance is not available),
KALT is set to 1.0, the Be Careful Flag (BCFLAG) is set, the FWDPTH
integrator and the 2D steering command (LATSTR) are zeroed and

control passes to the Autoland computations. Otherwise processing

continues based on the condition of the OLDLAT flag.

HORPTH COMPUTATIONS

Two steering algorithms are coded, differing primarily in the

path capture algorithm. Both make use of the relationship between

ground speed (GSFPS), bank angle (PHI) and the radius of turn (R):

R = GSFPS _ / g tan(PHI)

where: g is the acceleration due to gravity (32.1739 fps/s).

The first coded (selected with OLDLAT true) is a modification

of the original Boeing algorithm (specified in the "Terminal

Configured Vehicle B-737 Navigation Computer Software Description",
D6-32686), with the modification intended to reduce the time

required to acquire the track. Although it uses the higher nominal

bank angle (20 degrees), it's capture is more gradual since it

makes the simplifying assumption that delta track angle is a linear

function of cross-track distance (XTK). The mandatory capture

point (XTKLIM) is computed as:

XTKLIM = (abs(TKE) / 60.) * GSFPS 2 / ii.71

Where: TKE is limited to the range I0 to 135 degrees;

TKE / 60 is the approx radian value of TKE;

11.71 is g tan(20).

If abs(XTK) is less than XTKLIM, BCFLAG is cleared, which forces

the transition from Hor Path Armed to Hor Path Engaged (done in

MSPLGC). This is significant only when the pilot has specified the



166

approach angle via the track knob, as HORPTH is otherwise set
immediately•

The limiting course cut angle (TMPI) is then computed as:

TMPI = 702.6 * abs(XTK) / GSFPS 2

Where: 702.6 = 60 * g tan(20),

with the result limited to a min of 10 and a max of 90 degrees•

The steering command (LATSTR) is the solution of a linear

second order differential equation,

LATSTR = KY dY + KYD Y +

implemented as follows. The commanded Y dot (KY dY, labeled TMP2

in the code) is computed as XTK * KY and limited by a Y dot limit

computed from the course cut limit (TMPI) as follows:

Yc = LIM( KY * XTK, TMPI * DTOR * GSFPS * KYD )

This is then summed with the approximation of Y dot, where

Y = TKE * DTOR * GSFPS * KYD

and limited again (see below) before adding the Y acceleration term

(in the form of the nominal bank angle required to fly a curved

path (ALCBA) computed by HVGUID).

LATSTR = LIM( -(Y + Yc), 50 ) + ALCBA + FWDPTH

where FWDPTH is the limited integral term computed when AUTOE and

HORPTH are true, XTK is less than 1000 feet and TKE is less than

five degrees. FWDPTH is limited to five degrees bank angle
contribution.

FWDPTH = LIM( (FWDPTH - KI dT Yc), 5. )

The purpose of the Forward Path integrator is to improve the

tracking accuracy of Horizontal Path guidance by nulling the cross

path stand-off error. The time constant (i / KI) is ~80 sec.

Note: the 50 degree limit in the computation of LATSTR above was

a scaling limit designed to prevent overflow in the old fixed point

code. It isn't really necessary in the present implementation.

The second algorithm coded is also a modification of the

Boeing algorithm, designed to correct several of its deficiencies:

the slow capture sequence (partially corrected by the above), the

unpleasantly abrupt control response when HORPTH is selected or

when a switch in position source information occurs (e.g, the

RNAV/MLS transition), and a complaint that the control law is

overly aggressive at cruise speeds, while being marginally _tight'



167

at approach speeds.
The capture sequence describes a circle of radius R computed

(as above) using a nominal bank angle of 15 degrees. This value
was chosen since 15 degrees is the value used for curved paths by
the path definition equations, and it was desired that the path
flown be indistinguishable from that that would be flown if the CDU
were used to define the course cut to the desired path. Given a
course cut of angle TKE and a circle (of radius R) tangent to both
the defined path and the approach course, then the distance of the
tangent point of the approach course from the path (XTK) is defined
by the equation

XTKtanpt

Where:

= (i - cos(TKE)) * R

R = GSFPS 2 / g tan(15)

As with any transition to a curved segment, the turn initiation

must precede the tangent point by the time required to roll up to

the nominal bank angle. Unlike the calculation for ALCBA in HVGUID

(which assumes the initial bank angle is zero), the initial bank

angle here is unknown (as the aircraft might be turning towards the

path when the tangent point is reached) and must be accounted for.

The equation used is

XTKLIM = XTKt_n_ t - Y sign(XTK) * Advance_time

Where: Advance time = (15 - PHICMD * sign(XTK)) / 3.5

A minimum value of 250 ft is imposed on XTKLIM.

This doesn't completely handle the problem. In order to ensure a

smooth ogee during a capture from a parallel path less than two

radii from the desired path, the _TKE' used in the above equations

is advanced (prior to initiation of the turn onto course) from that

calculated by HVGUID by Track dot times a function of bank angle:

TKE(local) = TKE + TKDT * abs(PHICMD) / 6

When XTK becomes less than XTKLIM, the LCAP flag is set, which

starts the circular capture sequence and switches off the Track

advance calculations. On a directed approach to a straight path,
BCFLAG is also cleared at this time. The above was a later

addition to the initial design. It now appears that these

equations could be cost reduced slightly by removing the initial

bank angle adjustment from the XTKLIM equation and adjusting the

TKE advance time to compensate.

During the circular portion of the capture of a straight path,

a separate control law is used to generate the steering command.

It computes the bank angle required to remain on a circle tangent

to the desired path by using the inverse of the equation used to

compute XTKLIM:

LATSTR = arctan ( CIRCLD / XTK )



168

Where: CIRCLD = GSFPS2 * ( 1 - cos(TKE) ) / g

The actual equation replaces XTK with (XTK - 25 sign(XTK)), to

avoid overflying the path during roll out. (This is, of course,

gilding the lily, since if a defined path is flown, the aircraft

does diverge to the outside of the path during the roll out at the

end of the turn.) This equation is used only during capture of a

straight path segment. When TKE is reduced to 8 degrees (the point

at which the output from the two equations is approximately equal),

control is relinquished. At all other times (including capture of

a curved path) the standard tracking algorithm is used. When

approaching the path from _far away', a fixed 90 degree course cut

limit is used with the standard tracking algorithm until LCAP is

set.

Neither algorithm does a creditable job of capturing a curved

path without pilot assistance, but the second algorithm will make

a smooth capture in the directed capture (track angle selected)

mode by delaying the clear of BCFLAG until the tangent point of the

turn is reached.

The only other modification to the tracking algorithm involves

the use of KALT to vary the gain. KKYD, the gain on KYD, is set to

zero when HORPTH is false or when a navigation mode switch occurs

(PNMOD _ NAVMOD). It is then brought back up to KALT through a 4

second easy-on. KKY, the gain on KY, is then computed as the

square of KKYD. An increase in gain (if any) is not permitted

until the path is acquired, as KALT is limited to 1.0 until PTHTRK

is true. (PTHTRK is set when XTK becomes less than 500 feet and

TKE is less than 2 degrees). Maximum gain-up (2.0) is permitted

only if MLS mode is true. This is because (a), we're less likely

to know where we really are in RNAV mode and (b), the MLS autoland

equations have no capture algorithm and thus are dependent on a

precise delivery to the runway centerline by the 2D guidance

equations for a stable _loc' capture. The PTHTRK integrator is

gated by PTHTRK and a closing track angle of less than three

degrees.

Should a mode switch or path update occur (HORPTH is lost), or

the path be overflown due to a zero radius turn or excessive ground

speed, the control flags and integrators are cleared to force a

recapture sequence (approach, circular capture and track).

AUTOLAND COMPUTATIONS

This section begins by computing the beam capture limit

(LOCVL) for MLS mode. (LOCVL for ILS mode is still computed in

MLOG, but probably should be pulled into here for consistency).

For MLS mode, the beam capture window is funnel shaped: a constant

~30 feet at less than 1.5 nm (XHAT, measured from the Az site), 0.2

degrees from 1.5 to 3.0 nm, then increasing exponentially to 0.8

degrees at 6.2 nm. The offset from runway centerline (DELTY, the

MLS equivalent of ILS ETAFT) is then computed as -(YHAT) plus the

offset of the Az antenna from the runway centerline (YPROF,

nominally zero) and limited to LOCVL. If Localizer Armed (LOCA) is

true (Land mode has been selected), a check is made to see if the

Lateral Beam Sensed (LBS) flag can be set. This is set when DLPSI



169

(A/C heading - RWY heading) is less than 90 degrees and DELTY is

less than (LOCVL - 2.67). Localizer Engaged (LOCE) is not set

until the aircraft is rolled out on track. I.e, when bank angle is

less than 3 degrees and beam rate is less than .027 dps.

If MLSM is false with LOCA true (ILS mode), LBS and LOCE are

set simultaneously when DLPSI is less than 90 and LOCDEV is less

than LOCVL (computed in MLOG as a function of HKAD). For both ILS

and MLS mode, if AUTOE and LOCE are both true the localizer

Complementary Filter subroutine (CMPF) will be called. If MLSM and

ONCRS are both false, checks will be made first to see if it is

time to set the ONCRS flag. This will be done 5 seconds after the

criteria (LOC dot < .027 dps) and (LOCDEV < LOCVL) and (ROLL < 3

deg) are met, where LOCVL is recomputed for ONCRS requirements and

LOC dot (RF4) is computed by passing LOCDEV through a .12 second

lead-lag filter (RF3), limiting the output to 1.0 dps and passing

that through a 1.24 sec lag filter. If either LOCA or AUTOS is

true (indicating first pass of AUTOE or LOCE), RF3 and RF4 are

initialized and the timer is set for 5 seconds. Once the criteria

for On Course are met, the timer is counted down and ONCRS set when

it reaches zero. If for any reason the On Course requirements are

lost before ONCRS is set, the timer is reset to 5 seconds. For MLS

mode, ONCRS is set by CMPF approximately 3 seconds after LOCE.

TRACK ANGLE COMPUTATIONS

This section begins by passing TK through a one second lead-

lag filter to form Track dot (TKDT), used in the track angle gain-

up logic and also above in the 2D path capture look-ahead logic.

The basic track angle gain (KTA) is then computed as a linear

function of ground speed (.00475 GSFPS) with a lower limit of 1.0.

The next section of logic permits the pilot to select a track

change of up to 300 degrees in the same direction when in the

Auto/Track select mode. Since angles are normally carried as 0 +/-

180 degrees, the aircraft would reverse direction when the delta

track was dialed through 180 degrees without this logic. Bank

angle is monitored in this logic so that it is not active in track

preselect or VCWS/Track select mode. Thus if a track change of

more than 180 degrees is first selected and then Auto/Track select

engaged, the aircraft will take the shortest path around. DTKF is

the _adjusted' filtered track angle which is ultimately sent to the

Displays computer as TKREL. Its equivalent in VCWS Track Hold mode

is TRKBG. In interim processing, TKREL is used to contain the

unfiltered _adjusted' delta track (DELTKA in Auto mode) used in the

track mode steering algorithm. (This code should be rewritten to

make it less confusing).

If TRKHLD is true (VCWS Track hold mode), TKREL is set to VCWS

delta track (HLDTRK - TK) and TRKBG is computed by passing TKREL

through a 0.2 sec lag. Otherwise, HLDTRK is synchronized to TK,

TRKBG is zeroed (which causes the track bug to disappear from the

PFD) and, if AUTOE, TKREL is set to DELTKA. If neither AUTO/TKSEL

nor TRKHLD, TKREL is zeroed. Otherwise, both a speed (CAS)

dependent gainup (KTGA) and an error integrator (DTKI) are operated

once the track has been acquired. KTGA is computed in either

AUTO/TKSEL or VCWS/TRKHLD once delta track is less than four



170

degrees and track dot is less than 0.5 dps. Once track dot is less
than 0.2 dps, DTKI is computed as the integral of delta track, with
a 10 second time constant and a four degree limit. DTKI is washed
out whenever TKSEL and TRKHLD are both false or delta track is
greater than three degrees. (DTKI is also cleared when TKSEL and
PSTTKA are both false, but this is an error). KTGA is reset to 1.0
if the track knob is turned (to prevent an abrupt response to a
large delta track input) and washed out to 1.0 if a track change
command is made via the lateral trim switch (VCWS). The time
constants were chosen to make the gain up / gain down transparent

to the pilot.

The steering command for track angle modes is computed as

TEMP = KTA * KTGA * (TKREL + DTKI).

A check is then made to determine the active guidance mode. If in

VCWS, only track angle (TRKHLD) is available. If in AUTO mode

then, if LOCE is true, TEMP is set to LOCCMD from the CMPF

subroutine or, if HORPTH is true, TEMP is set to LATSTR from the

2D steering equations. TEMP is then limited to 30 degrees and set

into BACMD, which is the input to the LATRL procedure.

GLOBAL INPUTS: ALCBA, AUTOE, AUTOS, BCFLAG, CAS, CTKE, DELTKA,

DLPSI, GSFPS, GSFPS2, GUID2D, HLDTRK, HOKARM, HORPTH,

HTDZ, ICM, KTKREL, LATSTR, LOCA, LOCCMD, LOCDEV, LOCE,

LOCVL, MLSM, NAVMOD, OLDLAT, ONCRS, PHICMD, PNAV64,

PSTTKA, ROLL, RTKNOB, RTN, STKE, TK, TKASUM, TKE, TKSEL,

TRKHLD, TRKIN, XHAT, XTK, YDH, YPROF

GLOBAL OUTPUTS: BACMD, BCFLAG, CTKE, DELTKA, DELTY, HLDTRK, KALT,

LATSTR, LBS, LOCE, LOCVL, ONCRS, STKE, TKASUM, TKREL,

TRKBG, XTKLIM



171

MODULENAME:
FILE NAME:
PROCESS:

CMPF (Localizer Complementary Filter)
LATCMD.FOR
FCFAST

PURPOSE: To compute the Lateral Steering Command for AUTOLand
mode.

CALLED BY: LATCMD
CALLING SEQUENCE:CALL CMPF
CALLS TO: None

DESCRIPTION:
Since this routine is called only if AUTOE and LOCE are both

true, first pass processing is indicated if either AUTOS or LOCA is
true. (LOCA is cleared on the iteration after LOCE is set, and
AUTOS is true for one iteration when the AUTO button is pushed and
released, with AUTOEbeing set in MLOGprior to execution of this
module. As implemented, full initialization is only performed if
LOCA is true. This is an error). If first pass, the filters and
integrators are initialized. Otherwise, processing continues
according to the state of the MLS mode flag (MLSM).

In MLS mode, no filtering is done on the position error signal

(DELTY) since it was derived from complementary filtered YHAT. The

proportional signal (LOCCF) is set to .05556 DELTY until RLOUT,

when it is gained up as a function of XHAT to improve roll out

tracking. Since LOCCF is not filtered, and since MLS Autoland

demands 2D guidance to the runway centerline, the transition from

2D to Autoland is smoothed by a three second easy-on between BACMD

and LOCCMD. (This was correct when CMPF was a subprocedure of

LATRL. With CMPF contained in LATCMD, this easy-on would work

better if LATSTR were used instead of BACMD).

LOCINT, the integral of LOCCF, is computed once ONCRS is set

(when LOCGAIN reaches .98 -- approximately three seconds after

LOCE), with a limit of 20 fps. LOCINT is used to balance out any

bias in XTVEL and to improve beam tracking. The damping term

(SEL_XTV) is computed as .98634 times the Y dot output of the MLS

filter (YDH).

In ILS mode, ETA is calculated as .05556 ETAFT (calculated by

MLOG as 720. GPLOCD, thus ETA = 40. GPLOCD). Prior to ONCRS, 0.5

ETA is passed through a two second lag filter to produce LOCCF, and

SEL XTV is set to .7052 XTVEL. Once ONCRS is set, ETA is

complemented by 1.094 XTVEL (Close. .05556 * 20 = i. Iii) before

being passed through a 20 second lag filter. SEL XTV is then set

to .98634 XTVEL and the LOCINT integrator is operated.

In common code, the XTKDMP filter is IC'd to SEL XTV if LOCA

is true, and computed as a 0.4 second lag on SEL XTV otherwise.

LOCCMD is then computed as

LOCCMD = 2. * LOCCF + LOCINT - SEL XTV.



172

Note that in ILS mode, given the initialization value of LOCCF

(.7052 * XTVEL + PHICMD) / 2 ,

the first pass output of LOCCMD will be essentially equal to the

previous iteration's value of PHICMD. In MLS mode, it might differ

markedly, thus LOCCMD is passed through a three second easy-on.

GLOBAL INPUTS: AUTOE, AUTOS, BACMD, DELTY, ETAFT, LOCA, MLSM,

ONCRS, PHICMD, RLOUT, XHAT, XTVEL, YDH

GLOBAL OUTPUTS: LOCCMD, ONCRS



173

MODULENAME:
FILE NAME:
PROCESS:

LATRL (Lateral Axis Control Laws)
LATRL.FOR
FCFAST

PURPOSE: To calculate aileron and rudder commands for the flight
control system.

CALLED BY: FCFAST
CALLING SEQUENCE:CALL LATRL
CALLS TO: FRCWS, RCOM, RCOMA, RBASC, RBASCA

DESCRIPTION:
LATRL is the executive which performs common processing and

calls the other procedures which make up the lateral axis control

laws. Various combinations and levels of automatic flight control

assistance are available to the Research flight deck (RFD) and

Forward flight deck (FFD) pilots. The lateral control laws for

each mode are depicted in the DSDs found in Appendix A. Possible

modes are listed below, with a brief summary of their capabilities
and the subroutines involved.

FLIGHT MODES (See also procedure MLOG).

Pre-engage (PRENG): The autopilot is disconnected.

Processing is limited to system initialization which is performed

by LATRL mainline code.

Forward Flight Deck Control Wheel Steering (FFDE): Aileron

command processing is handled entirely within subroutine FRCWS.

Rudder control is direct from the FFD pedals. Submodes are

Attitude Sync and Attitude Hold.

Manual Electric (MANEL): RFD wheel input is applied directly

to the aileron command by LATRL main line code. RFD rudder pedal

and aileron trim inputs are processed by subroutine RBASC.

Attitude control wheel steering (ACWSE): This is a rate

command / attitude hold system with automatic turn coordination.

Roll attitude command is computed by subroutine RCOM with the

aileron command computed in mainline code. Rudder pedal, aileron

trim and turn coordination are processed by subroutine RBASC.

Submodes are Attitude Sync and Attitude Hold, with an automatic

wings leveler applied if the commanded bank angle is near zero.

Velocity control wheel steering (VCWSE): See notes for ACWSE.

This is a rate command / velocity vector hold system. Submodes are

Attitude Sync and turn radius hold, with track hold entered if the

commanded bank angle is near zero. Track hold mode is essentially

identical to AUTO/Track Select mode and uses the bank angle command

(BACMD) generated by procedure LATCMD.

Automatic (AUTOE): This is a rate limited bank angle command

system with automatic turn coordination. Small wheel and pedal



174

inputs are also permitted but a large (> 25%) wheel input causes
reversion to VCWSE. The bank angle command (BACMD) is input from
procedure LATCMD and entirely processed within subroutine RCOMA.
Aileron trim, rudder inputs and turn coordination are processed in
procedure RBASCA. Submodes are Track Select, Horizontal Path and
Autoland (LANDE), with LANDE being further subdivided into
acquisition, track (ONCRS), Decrab (DECRB), FLARE and roll-out
(RLOUT). The rudder and aileron contributions for the Decrab
maneuver and roll out guidance are computed by subroutine DCRAB.

Note: all flight modes except PRENGand MANEL use filtered
roll rate (PFI) feedback for roll stabilization. PFI is computed
in subroutine OUTIOM of the HDL process by passing body roll rate
(P) through a .05 second lag filter. In ACWSand VCWS, PFI is also
summed with AILCMP to produce AILCMD in OUTIOM, using the feedback
gain (KP) calculated by LATRL. in FFD and AUTO modes, roll rate
feedback is applied within subroutines FRCWS and RCOMA,
respectively.

The sub-procedures are:

FRCWS Forward flight deck Control Wheel Steering

RCOM Roll command Computer (CWS)

RCOMA Roll command Computer (Auto)

RBASC Basic trim and Rudder command computations (CWS)

RBASCA Basic trim and Rudder command computations (Auto)

DCRAB Decrab flight mode calculations (called by RCOMA)

LATRL begins by checking for initialization conditions. If

the Flight Controls process is in IC Mode or if the flight mode is

Pre-engage (PRENG), the aileron command (AILCMP) is synchronized to

aileron servo position (ALVDT), rudder command (RUDCMD) is

synchronized to rudder position (DRPOS), roll rate feedback gain

(KP) is zeroed and the aileron trim command (SYNCL) is initialized

to the gained and limited research flight deck (RFD) aileron trim

knob input (ATRIM) plus ALVDT as given:

SYNCL = SLIM(I.52 ATRIM, I0.) + ALVDT

Note that the RFD cab does not have an aileron trim mechanism,

therefore the aileron trim knob command is brought into the FM/FC

computer separately and is summed with the aileron command. The

aileron trim command is initialized to zero at auto-pilot

engagement regardless of aileron trim knob position. This is

accomplished by including the aileron trim command in SYNCL during

PRENG, then subtracting SYNCL from the aileron command in all

engaged modes. If in IC Mode, all first pass flags are cleared



175

(which will cause all filters to be IC'd) and the roll rate filter
(PFI) is zeroed. Otherwise (not IC but PRENG), the rudder/aileron
easy-on (RASWIT) is set to 0.5 (I.0 would be better) to smooth the
transient when the RFD is engaged.

Next, the raw control wheel input (DWHL) is gained and dead-
zoned to produce WHLINP and the wheel-out-of-detent flag (RCWOD)is
set according to whether the deadzone (WDZNE) has been exceeded.
If MODEXis less than 4, i.e, flight mode is PRENG, FFDE or MANEL,
the displayed roll signal (DROLL) is set equal to actual roll angle
(ROLL). Otherwise, if the side stick is selected or LABFLG is
true, WHLINP is exponentially shaped (conditionally) and limited to
a maximum of 12.5 degrees. The spoiler feedback inhibit (SPFINH)
and radius hold (RADHLD) flags are then cleared.

The next section handles mode specific processing. If FFDE is
selected, FRCWSis called to compute the aileron command. (The
rudder is actuated directly by the FFD rudder pedals without
computer aiding). If PRENG, no further processing is required. If
AUTOE, RCOMAand (if RUNMode is true) RBASCAare called to compute
the aileron and rudder commands, respectively.

For the CWSmodes, the aileron command is computed in line:
If MANEL, KP is set to zero, RBASC is called to compute the RFD
aileron trim knob contribution (AILTRM) and the rudder command
(RUDCMD), and AILCMP is computed as the negative of WHLINP plus

AILTRM minus SYNCL. The negative is used to accomodate aircraft
wiring polarity which is positive left wing down. For ACWS and
VCWS modes, RCOM is called to compute the bank angle command
(PHICMD) and bank angle error (PHIERR) and (if RUN Mode) RBASC is
called to compute the rudder command and aileron trim contribution
to the aileron command. Next, if the aircraft is in the air (GRD
is false) the basic inner loop gain (KPI) is computed as a function
of flap setting, with a minimum value of 1.41 and maximum value
(KPLIM) of 1.73. Otherwise, KPI is fixed at 1.41 to minimize
aileron activity on the ground. The roll rate feedback gain (KP)
is then calculated based on bit selections in the LATSEL word.
(Note: during program development in the real time simulator KP =
KPI worked best, but this caused problems in the air. We have been
using KP = KPI * KVCAS but there have been some indications that

this is still too high. We should test the option KP = KPI * KV

(which is what was used by the original control law) sometime soon

so that the selection logic can be removed.)

The intermediate aileron command (AILCDI) is next computed as

KP * KPI * PHIERR. If in Velocity CWS mode and HTDZ is less than

300 feet and FLAP is greater than 20 (i.e, landing configuration),

the aileron cross-feed term (AILXFD) is added to AILCDI. The final

aileron command is first loaded in TEMP as

-(AILCDI + KWHLF4 * WHLINP + AILTRM - SYNCL)

TEMP is then switched into AILCMP by RASWIT, which mechanizes a one

second easy-on to minimize transients when switching modes. This

same variable is also used to switch between sources for RUDCMD (in

RBASC and RBASCA).

Final processing for the higher flight modes computes the



176

displayed roll signal (DROLL) and the nominal aileron command gain
(KAILG - applied by OUTIOM). If GRD is true or ACWSE, VCWSEand
TKSEL are all false, DROLL is set equal to ROLL and KAILG is set to
1.0. Otherwise, DROLL is computed as a 0.3 second lag on DRIN,
which is set to commanded bank angle (PHICMD) when turning and is
washed out to zero when in a track hold mode and the track has been
acquired. This wash out is to prevent turbulence from appearing in
the curved trend vector when in a track mode. KAILG is still
normally set to 1.0, but logic is implemented to compute a lower
gain at a flap setting of 30 or 40 degrees. This is test code
intended to address a problem of aileron oscillation at high
command rates at the higher flap settings.

LATRL processing completes by updating the first pass flags.
These flags are set to 2 by each procedure which uses them when
those procedures are called. This code subtracts 1 from each flag
which is non-zero. If the pertinent flag is found zero by a
controlled procedure, it means that that procedure did not execute
on the previous iteration and initialization is required.

GLOBAL INPUTS: ACWSE, AILCMP, ALVDT, ATRIM, AUTOE, DRPOS, DWHL,
FFDE, FLAP, FLPPF, GRD, HTDZ, ICM, KPLIM, KTDROL, KV,
KVCAS, KWHLF4, LABFLG, LATSEL, MANEL, MODEX, PHICMD,
PHIERR, PRENG, ROLL, RUNM, SSTICK, SYNCL, TKSEL, VCWSE,
WDZNE, WHLSHAP

GLOBAL OUTPUTS: AILCMP, DROLL, KAILG, KP, PFI, RADHLD, RUDCMD,
SPFINH, SYNCL, WHLINP



177

MODULENAME:
FILE NAME:
PROCESS:

FRCWS(Forward Flight Deck Roll CWS)
LATRL.FOR
FCFAST

PURPOSE: Compute the aileron command for FFD CWSmode.

CALLED BY: LATRL
CALLING SEQUENCE:CALL FRCWS
CALLS TO: None

DESCRIPTION:
FRCWSimplements an aileron command/attitude capture control

law. If the first pass flag is set, the roll command integrator
(FPHCMD) is initialized to ROLL, KP is set to zero (preventing roll
rate stabilization in OUTIOM) and the roll rate filter time
constant (KTPFL) is set for 50 msec. If the pilot's control wheel
is out of detent, the FFD wheel force input (FWHL) is passed
through a dead zone, gained, limited and stored as FCOM.

There are two submodes within FRCWS: attitude-hold and
attitude-synchronization (ATT_SYNC). The difference is that
ATT SYNC tracks the existing bank angle when the control wheel is
out--of detent, whereas the attitude-hold mode maintains whatever
bank angle is established when the wheel is returned to detent.
ATT SYNCand the wheel-out-of-detent flag (FRWOD)are set when FWHL
is greater than the deadzone (3 ibs). FRWODis cleared when FWHL
becomes less than 3, and ATT SYNC is cleared (implying attitude
hold) when roll error (FPHIER) becomes less than .05. In the
ATT SYNC submode, ROLL input is filtered, limited and output as
FPHCMD. Otherwise FPHCMD retains its last value. FPHIER is
calculated as FPHCMD- ROLL.

AILI is calculated as 2.0 FPHIER when FRWOD is true.
Otherwise, roll rate damping is added, yielding

AILI = 2.0 FPHIER - 1.5 FRFI.

SPFINH is also set when FRWOD is true, which inhibits hardware

spoiler feedback. In every case the aileron command is calculated

as:

The

requirements.

AILCMP.

AILCMP = -(KV * AILI + FCOM).

result is negated to match aircraft wiring polarity

Note: since KP = 0, AILCMD will be identical to

GLOBAL INPUTS:

GLOBAL OUTPUTS:

ATT_SYNC, FWHL, KV, PFI, ROLL

AILCMP, ATT SYNC, KP, KTPFL, SPFINH



178

MODULENAME:
FILE NAME:
PROCESS:

RCOM (Roll Computer - CWS)
LATRL.FOR
FCFAST

PURPOSE: To calculate the bank angle command (PHICMD) and command
error term (PHIERR) for the Aft Flight Deck CWSmodes.

CALLED BY: LATRL
CALLING SEQUENCE:CALL RCOM
CALLS TO: ANGL, ATAN, TAN

DESCRIPTION:
This module provides bank angle computations for both Attitude

(ACWS) and Velocity (VCWS) Control Wheel Steering modes. Both
flight modes are rate command / state hold systems, with the

difference being in the state held. Both modes have three

submodes: Attitude Sync (ATT SYNC), Attitude Hold (ATT HOLD) and

a special mode entered when wings are commanded level. ATT SYNC is

identical for both modes. The pilot is commanding a roql rate

proportional to a side stick controller input (RCWOD is true and

WHLINP is non-zero) and both the commanded (PHICMD) and actual

(ROLL) bank angle are progressing in the commanded direction, with

PHICMD leading by an amount proportional to roll rate. So long as

RCWOD is true, a counter (DELCTR) is loaded with a value

proportional to PHIERR (PHICMD - ROLL). When the side stick is

centered (RCWOD becomes false) PHICMD is frozen and DELCTR is

decremented, giving time for ROLL to catch up with PHICMD. Once

DELCTR becomes zero, ATT SYNC is cleared and (assuming the

commanded bank angle differs materially from zero but is less than

30 degrees) ATT HOLD is set. For ACWS, this effectively completes

processing. The commanded bank angle is maintained until a further

sidestick input. PHICMD and PHIERR are the outputs to the roll

inner loop processing. For VCWS, a computation is made of the

effective radius of the turn that can be flown at the commanded

bank angle and ground speed prevailing at the time DELCTR is

counted down to i. On subsequent iterations, the nominal cross

track acceleration (XTKNOM) and bank angle (RCLIM) required to

maintain this turn radius at the prevailing ground speed is

computed and used to adjust the bank angle as necessary. XTKI, the

integral of (XTKNOM - XTACC), is computed and summed with PHIERR to

improve the tracking accuracy in the face of gusts or roll mistrim.

If the initial commanded bank angle is greater than 30

degrees, the bank angle is returned to 30 degrees as WHLINP becomes

zero. DELCTR is not allowed to decrease below 2 with PHICMD

greater than 30, so ATT HOLD never becomes true. This is a direct

bank angle command mode, with the bank angle commanded being 30

plus f(WHLINP), to a maximum of 45 degrees.

While RCWOD is zero and DELCTR is non-zero, PHICMD and average

commmanded roll rate (PDTF) are checked to see if ultimate roll

attitude approximates zero. If either PHICMD or (PHICMD + PDTF) is

less than TKHDZN (1.5 degrees), PHICWO is set. This causes PHICMD

to be washed out to zero. For ACWS, this completes processing.

The mode is effectively identical to ATT HOLD except that the



179

attitude held is identically zero degrees bank angle. For VCWS,
TRKHLD is set and PHICWOis cleared once PHICMD decays to less than
0.25 degrees. When TRKHLD is set, logic within procedure LATCMD
freezes HLDTKK at the prevailing track angle and subsequently
computes a bank angle command (BACMD) based on the difference
between TK and HLDTRK. This mode is essentially identical to
AUTO/TKSEL, except that the selected track is adjusted via the
lateral trim switch on the sidestick rather than via the Control
Mode Panel. When the trim switch is depressed and held (VATRR or
VATRL true), HLDTRKis slewed at a rate that begins at 0.25 dps and
gradually increases to a maximum of 1.5 dps after 5 seconds. In
Track Hold mode, the difference between TK and HLDTRK is contained
in TRKBG, which is sent to displays. TRKBGnon-zero in VCWSmode
causes the "track bananas" to be displayed, both indicating that
Track Hold mode is active and displaying the selected track.

For both ACWS and VCWS, processing begins by checking the
first pass flag and initializing the filters and mode discretes if
true. Next, if TRKHLD is true (VCWSonly), the left (VATRL) and
right (VATRR) trim switches are checked. If neither is true, CLKV
is set to zero. Otherwise, if CLKV was previously zero, it is set
to plus or minus 0.5 for right or left trim, respectively, and the
variable gain (KGI) is initialized to 0.5. On subsequent
iterations without an intervening release of the trim switch, KGI
is incremented at a rate of 0.5/sec to a maximum of 3.0. In every
case, KGI * CLKV is then integrated into HLDTRK, DELCTR (used in
this module to control TKSYNC) is set to 5. KGI and TRKIN (used in
procedure LATCMDto control track error gain and by MSPROto force
displays to show the track line on the Nay display) is set to 20.

The next section of code determines which submode to engage.
Engage criteria (effective) for the CWSsubmodes are as follows:

ATT SYNC: Set by RCWOD• GRD
-- Cleared by DELCTR = 0

ATT HOLD: Set by
Cleared by

(DELCTR = 0) • PHICWO+ TRKHLD + GRD
RCWOD

RADHLD: = VCWSE• ATT HOLD

PHICWO: Set by GRD +
((DELCTR > 0) • (IPHICMDI--TKHDZN->) • TRKHLD)

Cleared by RCWOD+ TRKHLD

TRKHLD: Set by VCWSE• PHICWO • (IPHICMDI < 0.25)
Cleared by RCWOD

[ Note: It should also be cleared by (GRD + VCWSE) ]

TKSYNC Set by TRKHLD • (DELCTR = 0) • (ITRKBGI < 1.5)

Cleared by DELCTR*PDTCMD*PHICMD > 0.

Input to the PHICMD integrator (PDTCMD) is computed based on

the selected submode, with the following hierarchical order:



180

Direct bank angle command (IPHICMDI >= 30):

PDTCMD= SLIM(*, i0.)

Where: * = 1.25 * WHLINP - sign((IPHICMDI - 29.5), PHICMD)
i.e, PHICMD is increased 1.25 deg beyond 29.5 per each unit
of WHLINP.

TRKHLD or RADHLD (mutually exclusive):

PDTCMD= SLIM((5. * ROLERR), 4.)

Where: ROLERR= RCLIM - PHICMD

PHICWO:

PDTCMD= SLIM(- (2. * PHICMD), I0.)

ATT SYNC:
m

PDTCMD = KPDTC * WHLINP

Where; KPDTC = 0.8

Else:

PDTCMD = 0.

For TRKHLD mode, RCLIM = SLIM(BACMD, LMTR), where BACMD is the

command input from procedure LATCMD and LMTR is set to the number

of degrees of bank required to fly a standard rate (2 min) turn, up

to a maximum of 29.5 degrees.

For RADHLD mode, RCLIM = SLIM(atan(XTKNOM / g), LMTR), where

XTKNOM = GSFPS 2 / RADTRN, RADTRN is the commanded turn radius,

g is the nominal acceleration due to gravity (32.174 fps/sec) and

LMTR = 30.

Finally, PHICMD is computed as the integral of PDTCMD, with a

limit of 45 degrees, and PHIERR is computed as the difference

between PHICMD and ROLL plus XTKI. XTKI is integrated whenever

RADHLD is true and washed out whenever the conditions for RADHLD do

not prevail. The equation for clearing TKSYNC is intended to delay

activation of the curved trend vector until the airplane is banked

in the direction trimmed, thus avoiding a false _moving in the

wrong direction' cue during turbulence. The clear of DRIN is no

longer necessary, but was part of an earlier attempt to solve the

same problem.

GLOBAL INPUTS: ACWSE, ACWSS, ATT_SYNC, BACMD, GRD, GS, GSFPS2,

HLDTRK, ICM, KPDTC, KTAUPF, LATSEL, PHICMD, PHIERR,

RADHLD, ROLL, TKHDZN, TRKBG, TRKHLD, VATRR, VATRL, VCWSE,

VCWSS, WHLINP, XTACC, XTKI



181

GLOBAL OUTPUTS: ATT HOLD, ATT SYNC, HLDTRK, KTPFL, PDTCMD,

PHICMD, PHIERR, RADHLD, SPFINH, TRKHLD, TRKIN, XTKI



182

MODULE NAME:

FILE NAME:

PROCESS:

RBASC (Roll Basic - CWS Modes)

LATRL.FOR

FCFAST

PURPOSE: To calculate the rudder command, aileron trim and aileron

crossfeed term (VCWS).

CALLED BY: LATRL

CALLING SEQUENCE: CALL RBASC

CALLS TO: None

DESCRIPTION:

This routine is called in MANEL, ACWS and VCWS modes to

process the aileron trim knob (ATRIM) and rudder-pedal-plus-trim

(PEDAL) inputs. In ACWS and VCWS modes it also computes the turn

coordinator, aileron cross-feed (AILXFD) for VCWS decrab and auto

trim for aileron and rudder.

On first pass all filter outputs are zeroed and the CLOSED

switch is cleared (to prevent the possibility of creating an

erroneous turn coordinator output if control is received with the

airplane in a bank).

Subsequently, a check is made to see if trim computation is

permissible. This requires a mode of ACWS or VCWS, no pilot pedal

input (note: since the inputs are pedal-plus-trim and trim, these

two must be differenced to make the determination) and a _wings

level' submode (PHICWO or TKSYNC).

If these conditions prevail, the aileron trim limit (SYNCLM)

is first initialized to the greater of SYNCL or 5 degrees. This is

to account for the fact that the present initialization algorithm

for SYNCL can produce spuriously large values if RFD control is

received with the aircraft in a bank. As trim occurs, SYNCLM will

gradually be reduced to 5 degrees. SYNCL is then computed as the

integral of KATRM * PHIERR with a limit of SYNCLM. This trims for

minimum bank angle error when near-zero bank angle is being

commanded. KATRM is selected to give a time constant of 80

seconds. If Height AGL is greater than 300 feet and the option is

enabled via LATSEL, RUDTRM is computed as the integral of KRTRM *

AY limited to 2 degrees. KRTRM is selected to give a time constant

of 80 seconds.

Next, aileron trim input (ATRIM) is multiplied by 1.52 and

stored in AILTRM. The turn coordinator input (DELRF) is calculated

in a washout filter as follows:

DELRF = PHICMD - RF2

RF2 = PHICMD - exp(-0.3 dT) * DELRF

DELRF = .235 DELRF

I.e, DELRF = (.785 S / 3.33 S + I) * PHICMD.

The PEDAL input is multiplied by 6.55 and stored in RUDCML,

the local rudder command. PEDALF is then computed as a one second

lag on RUDCML. If VCWS, AILXFD is calculated as -2 PEDALF with a

limit of 10 degrees for HTDZ > 15 feet, decreasing to zero at HTDZ



183

<= 0. ALW is then passed through a 2 second lag for use in the
turn coordinator.

If ACWSor VCWSmode and PHICMD is less than 2 degrees, then
the turn coordinator is enabled. Once enabled, turn coordination
remains latched until MODEXbecomes less than 4. The gain on DELRF
(TCGAIN) is first computed as a function of filtered flap position
(FLPPF): increasing linearly from 0 to 0.4 as FLPPF varies from 0
to 25 degrees, and linearly from 0.4 to 1.0 as FLPPF increases from
25 to 40. This gain is then increased by the quantity
0.I * (i. - sin2(ROLL) * ALFAF. Finally, RUDCMLis recomputed as:

RUDCML= RUDCML + TCGAIN * DELRF + RUDTRM.

Processing concludes by moving RUDCML into RUDCMD using the

easy-on RASWIT.

GLOBAL INPUTS: ALW, ATRIM, BMACC, FLPPF, HKAD, HTDZ, KATRM,

KDCRB, KRTRM, KTDCRB, LATSEL, MODEX, PEDAL, PHICMD,

PHIERR, RTRIM, RUDCMD, RUDTRM, SROLL, SYNCL, VCWSE

GLOBAL OUTPUTS: RUDCMD, RUDTRM, SYNCL



184

MODULENAME:
FILE NAME:
PROCESS:

RCOMA(Roll Computer - Auto Modes)
LATRL.FOR
FCFAST

PURPOSE: To calculate the aileron command (AILCMP) for the Aft
Flight Deck Auto modes.

CALLED BY: LATRL
CALLING SEQUENCE:CALL RCOMA
CALLS TO: ATAN, DCRAB

DESCRIPTION:
RCOMAis called in all AUTO modes to process the horizontal

path command (BACMD). Processing begins by forcing KTPFL to the
standard value (50 msec) and clearing TRKHLD (just in case). It
then computes the maximum value for BACMD(LMTR) as: 5 degrees if
in FLARE mode, 10 degrees if ONCRSis true, the value appropriate
to a standard rate (2 minute) turn if TKSEL (to a maximum of 25
degrees), or 25 degrees otherwise. PHICMD is then subtracted from
the limited BACMDto produce ROLERR.

Next, LMTR is recomputed as a rate command limit: 7 dps if
ONCRS, and 4 dps otherwise. The roll rate command (PDTCMD) is
computed as 5. ROLERR, limited as indicated. This permits quicker
response once ONCRS is set, but reduces the maximum allowable
excursion. (Note: once set, ONCRSremains true through DECRAB,
FLARE and RLOUT). PHICMD is then computed as the integral of
PDTCMD. (The limit on this integrator is meaningless, since the
input was already limited to a lesser value). PHICMD is thus a 0.2
second rate limited lag on BACMD.

If RLOUT is true, PHIERR is set to the negative of ROLL,
effectively commanding wings level. Otherwise, PHIERR is computed
as indicated:

PHIERR = PHICMD - ROLL + 0.5 * XTK1

XTKI is washed out by the next statement, so its inclusion here is

simply an easy-on when switching from VCWS to AUTO.

The TKSYNC discrete is set in track select mode when the track

is essentially acquired and cleared when a track change is

commanded, exactly as is done in VCWS _TRKHLD mode. Again, the

clearing of DRIN is superfluous.

If in AUTOLAND/DECRB mode, subroutine DCKAB is called next to

compute the rudder and aileron contributions for the decrab

maneuver. The intermediate aileron command (AILCDI) is initially

computed as 2. PHIERR. If RCWOD is false (as it usually will be),

the roll damping term (-1.4 PFI) is then added and, if DECRB, the

aileron crossfeed term (AILXFD) is added. AILCDI is then

multiplied by the airspeed gain (KV) and (once ONCRS becomes true)

is gained up by 1.25.

The final aileron command is first loaded in TEMP as

-(AILCDI + WHLINP + AILTRM - SYNCL).



185

TEMP is then switched into AILCMP by RASWIT, which mechanizes a 1
second easy-on when switching into AUTO mode. Note that RASWIT
progresses from 0 to 1 when switching from CWSto AUTO, and from 1
to 0 when switching into CWS. Since KP is set to zero, AILCMD will
be equal to AILCMP.

GLOBAL INPUTS: AILCMP, BACMD, DECRB, FLARE, GS, KV, ONCRS, PFI
PHICMD, ROLL, SYNCL, TKREL, TKSEL, TRKIN, WHLINP, XTKI

GLOBAL OUTPUTS: AILCMP,
TRKHLD, XTKI

KP, KTPFL, PDTCMD, PHICMD, PHIERR,



186

MODULENAME:
FILE NAME:
PROCESS:

RBASCA (Roll Basics - Auto Modes)
LATRL.FOR
FCFAST

PURPOSE: To calculate the rudder command, aileron trim and aileron
crossfeed term (Auto).

CALLED BY: LATRL
CALLING SEQUENCE:CALL RBASCA
CALLS TO: None

DESCRIPTION:
The roll basic (RBASCA) procedure is called in AUTO mode to

process the pilot's ATRIM and PEDAL inputs and compute rudder
commands for turn coordination. This procedure is a recent
modification of an old procedure and contains several errors, the
first of which is the absence of initialization code. Since AUTO
mode is typically entered from VCWS, this has caused no apparent
problems.

Aileron trim (AILTRM) is computed as 1.52 * ATRIM, and the
rudder trim value (RUDTRM) that may have been computed by RBASC in
VCWSmode is washed out. The input to the turn coordinator (DELRF)
is then computed by passing PHICMD through a washout filter as
indicated:

DELRF = (.785 S / 3.33 S + i) * PHICMD.

RUDCML, the local rudder command, is first computed as 6.55 *

PEDAL. The turn coordinator gain (TCGAIN) is next computed.

TCGAIN varies linearly from 0.0 to 0.5 as filtered flap position

(FLPPF) varies from 0 to 20, remains constant at 0.5 until FLPPF

reaches 30, then varies from 0.5 to 1.0 as FLPPF increases to 40.

Unfortunately, a leftover line of code blocks turn coordination at

FLPPF < 20. This needs to be removed. Turn coordination is

legitimately blocked until PHICMD is less than 2 degrees to prevent

a transient that might be caused by enabling it with the plane in

a bank. Once enabled, RUDCML is recomputed as follows:

RUDCML = RUDCML + TCGAIN * DELRF.

Finally, if DECRB is true, the decrab maneuver rudder

contribution (DECKAB - computed by subroutine DCRAB) is subtracted.

RUDCML is then switched into RUDCMD using the easy-on RASWIT.

GLOBAL INPUTS: ATRIM,

RUDTRM
DECRB, FLPPF, PEDAL, PHICMD, RUDCMD,

GLOBAL OUTPUTS: RUDCMD, RUDTRM



187

MODULENAME:
FILE NAME:
PROCESS:

DCRAB (De-crab (Autoland) Maneuver)
LATRL.FOR
FCFAST

PURPOSE: To calculate the rudder and aileron command contribution
for Auto / Decrab mode (Autoland).

CALLED BY: RCOMA

CALLING SEQUENCE: CALL DCRAB

CALLS TO: None

DESCRIPTION:

This routine generates decrab and aileron crossfeed signals to

align the aircraft with the runway centerline just prior to

touchdown.

The first-pass flag is checked and if set, the yaw filter

FLTR 1 (the lag portion of the washout filter YFI) and the yaw

integrator YINTI are initialized to zero, and the runway heading

error (DLPSI) is passed through a 5 degree deadzone and placed in

PSIDZ. Before RLOUT, PSIDZ is subtracted from DLPSI and the

difference is stored in PSILIM. Subsequently, PSILIM = DLPSI.

PSILIM is passed through a 6 second easy-on to produce YTEMP.

Next, DLPSI is differentiated (passed through a 0.4 second

washout) and stored as YFI. Prior to RLOUT the yaw damping term

YAWDMP is zero and YTEMP is integrated, limited, and stored in

YINTI. Subsequent to RLOUT, YINTI should be held constant (due to

a coding error it continues to be integrated) and YAWDMP is

computed as indicated:

YAWDMP = 12.55 * YFI - 2. * PHICMD

Where: 12.55 = 5.0 / 0.4

Finally, both before and after RLOUT, aileron cross-feed

(AILXFD) and decrab rudder command (DECRAB) are generated as
follows:

YAWCMD = YTEMP + .756 YINTI

DECRAB = YAWCMD + YAWDMP

AILXFD = 1.4 YAWCMD

GLOBAL INPUTS:

GLOBAL OUTPUTS:

DLPSI, PHICMD, RLOUT

None



188

MODULENAME:
FILE NAME:
PROCESS:

VERCMD (Vertical Path Command)
VERCMD.FOR
FCFAST

PURPOSE: To calculate the vertical acceleration command for the
automatic flight modes plus VCWSaltitude hold.

CALLED BY: FCFAST
CALLING SEQUENCE:CALL VERCMD
CALLS TO: LNITRP, PAL

DESCRIPTION:
This module begins by computing the filtered flap position

(FLPPF), used here and in LATRL, as a two second lag on FLPPOS. If
on the ground (SQUAT is true), wing alpha (ALW) is set to pitch
attitude plus one degree, and the basic overspeed gain (KDCALF) is
set to 2.0. Otherwise, ALW is computed as the sum of alpha vane
input (ALFAV) plus a flap position dependent bias plus one degree.
The alpha margin (ALWMARG) is then computed by passing the
difference of ALW and the flap dependent alpha limit through a
lead/lag filter as given:

ALWMARG =

FLPTAB (FLPNDX) - ALW

(2S + i) (2S + I)

Where: FLPTAB is the table of alpha limits

FLPNDX is an index based on the flap handle setting,

equal to 1 for flaps 0, and 9 for flaps 40.

Finally, if ALWMARG is less than zero, the Research Flight Deck

(RFD) is engaged (MODEX > 2) and SQUAT is false, a bit is set in

the displays flag word (LFCFLG) to cause the AOA message to appear,

and the stick shaker is activated by setting the output discretes

FADERS and SHAKER true, then setting the stick force output command

(EXPFRC) to plus or minus 1.0 (SACVIB) on alternate iterations.

The next section (if enabled) computes a dynamic alpha and

overspeed protection algorithm. This was the original algorithm

coded. The alpha protection portion suffers from the fact that

when the stick shaker algorithm was added, the alpha limit numbers

provided for that algorithm were simply coded into the original

flap table. These numbers are lower for most flap settings (this

is legitimate since the stick shaker algorithm does nothing until

the limit is reached, whereas the original algorithm starts to

dynamically reduce alpha at 80% of the limit). The result is that

this algorithm limits alpha (thus also gamma) prematurely. Two

separate flap tables should have been coded.

The alpha upper limit (AULIM) is computed via a call to the

linear interpolation routine (LNITRP) with FLPPF and FLPTAB as

inputs. The lower limit (ALLIM) is then set to 0.6 AULIM. If bit

15 of the vertical control option word (VSTSEL) is set, then for

AUTO mode the gamma limit (GAMLIM) is set to i0 degrees and

otherwise to 20 degrees. If bit 15 is clear, GAMLIM is set to 8.5



189

degrees for negative and 1.4 AULIM for positive gamma. GAMLIMthen
would vary from 8.5 to 14.8 degrees depending on flap setting and
gamma. The vertical speed limit (LHDC) is then computed as GAMLIM
times the degree to radian conversion factor (DTOR) times true air
speed in fps (TASFPS). The vertical acceleration limit (LHDD) is
set to 5 fps/sec unless the maximum airspeed for the existing flap
setting is approached (KHCAS< I.), in which case it is set to I0
fps/sec. The vertical path command limit in deg/sec (LVPC) is then
computed as LHDD times the radian to degree conversion factor
(RTOD) divided by LIMGS, which is the lesser of ground speed in fps
(GSFPS) or 170 fps (i00 knots).

The alpha control variable (KALFA) is computed as follows. If
ALW is less than ALLIM, TEMP is set to 1.0. Otherwise it is set as
follows:

TEMP = I. - (ALW - ALLIM) / (AULIM - ALLIM)

This is a number that varies from 0.0 to 1.0 as ALW varies from

ALLIM to AULIM. Two times TEMP is then passed through a four

second lag to produce KDCALF. KALFA is KDCALF limited to the range

0.0 to 1.0. If enabled, KDCALF is used in the SPDCMD module to

begin increasing thrust when alpha exceeds 0.6 AULIM, and KALFA is

used in this module (or in ELEVP) to begin reducing the gamma or

pitch command when alpha exceeds 0.8 AULIM. If bit 15 of VSTSEL is

set or if AUTOE is false or the autothrottle is not engaged (ATE is

false), KALFA is forced to 1.0. The vertical guidance modes are

calculated next.

FLIGHT PATH ANGLE MODE

If flight path angle mode is selected or preselected (FPASEL

or PSTFPA true), FPASUM is limited to GAMLIM and the flight path

angle gain (KFPA) is computed as .01GSFPS. The intermediate TEMP

is then set to KALFA times FPASUM if FPASUM is positive, and KHCAS

times FPASUM otherwise. The FPA mode vertical acceleration command

(DFPAHM) is then computed as KFPA * (TEMP - GAMMA). If FPASEL and

PSTFPA are both false, TEMP is set to the VCWS gamma command

(PGAMC) if in VCWS mode, and to GAMMA otherwise. TEMP is then

rounded to the nearest tenth of a degree and set into FPASUM.

ALTITUDE MODE

If altitude mode is selected, preselected or armed (ALTHLD,

ALTARM or PSTALT true), the altitude error (DELALT) is computed as

ALTSUM - ALTCOR. If ALTHLD is true (indicating VCWS altitude

hold), TEMP is set to HLDALT - ALTCOR and the altitude mode

vertical speed command (ASC) is computed as follows:

ASC = .075 * SLIM(TEMP, (8.333 / .075))

This limits the maximum vertical speed command to 500 fpm (8.333

fps). Otherwise, TEMP is set to DELALT and ASC is computed as

follows:

ASC = .075 * SLIM(TEMP, (ALHDC / .075))



190

Where: ALHDC is the greater of 500 fpm or

the vertical speed which prevailed

at the time altitude mode was

selected.

Note: it is possible to be in VCWS altitude hold at one

altitude, with an altitude armed or preselected at (ALTSUM equal

to) a different altitude. DELALT always refers to ALTSUM.

If in VCWS mode or if AUTOE and ALTSEL, GAMCMD is computed as

RTOD times ASC divided by LIMGS. In AUTO/ALTSEL mode, GAMCMD will

be set into NCL2 (the throttle feed forward command) and also into

GAMC, which is sent to the displays computer to drive the gamma

wedges on the PFD. In VCWSE (with ALTHLD true), GAMCMD will be

integrated into PGAMC, the gamma command integrator in the PAFD

subroutine of ELEVP, which is subsequently set into GAMC. NCL2 is

set by logic in ELEVP.

If PSTALT, ALTARM and ALTSEL are all false, ALTSUM is set to

ALTCOR (rounded to the nearest 10 foot increment) and DELALT is set

to zero. If ALTHLD is false, HLDALT is set in the same manner.

Finally, ALHDC is computed as follows: If ALTSEL is true, the

Boolean ALTHOLD is set when HDCF becomes less than 8.334, remaining

set (once true) until ALTSEL becomes false. Then, if ALTHOLD is

true, ALHDC is set to 8.333 fps (500 fpm). Otherwise it is set to

the lesser of its previous value or 0.5 fps more than the present

magnitude of HDCF. If ALTSEL is false, ALTHOLD is set false and

ALHDC is set to the present magnitude of HDCF.

VERTICAL PATH (3D) MODE

If 3D guidance is possible (GUID3D is true), the vertical path

guidance algorithms are evaluated. An easy-on is provided on

initial engagement of VERPTH, or when a switch occurs in the

altitude reference source (NVVMOD changes value) or when switching

from CWS to AUTO with VERPTH engaged. The Boolean MODSW is set

when NVVMOD differs from its previous value. The absolute value of

3D altitude error (HER - set by HVGUID) is computed, and the

vertical speed error is computed as the difference between actual

complementary filtered hdot and path nominal hdot (HDE = HDCF -

HDTC). If IHERI is not identically zero and either AUTOS or MODSW

is true or VERPTH is false, then the following occurs: The

vertical path acquired flag (VPTHTK) is set false. If VERPTH is

true and either AUTOS or MODSW becomes true, the variable vertical

gain (KKH) is set to 0.i to mechanize the easy-on. Else, if JHERJ

is greater than 500 feet, or if JHERJ is greater than i00 feet and

the aircraft is diverging from the path (HDE times HER is greater

than zero), the vertical _be careful' flag (VBCFLG) is set true.

(This prevents MSPLGC from setting VERPTH true). Else if IHERI is

less than 25 feet, or if HDE times HER is greater than zero (we're

flying toward the path) and the commanded minus the measured

components of the vertical steering command (VSTRA - VSTRB) times

HDE is less than zero (it's time to begin reducing the rate of

approach), then VBCFLG is set false and KKH is set to 0.I. The
check for HER non-zero in the above is intended to avoid false



191

captures caused by the fact that HER is not computed by HVGUID
until several iterations after GUID3D becomes true. Once VERPTH
becomes true, IHERI is less than 25 feet and IHDEI is less than one

foot per second, VPTHTK is set true if AUTOE is true.

The variable tracking gain (KKH) is computed next. If IC mode

is true or VPTHTK is false, TEMP is set to 1.0. If IC mode, KKH is

also set to 1.0. Otherwise, TEMP is set to KALT (the airspeed gain

computed by LATCMD) divided by 1.6. TEMP is then passed through a

four second lag to produce KKH. The vertical error and vertical

speed error gains are then computed as follows:

KH = .09 * KKH 2

KHD = 0.6 * KKH

The (pre-limiting) commanded hdot (VSTRA) is a function of altitude

error and nominal path climb/descent rate as given:

VSTRA = HER * KH + HDTC * KHD

TMPI is then set to VSTRA limited to KHD times LHDC.

value of VSTRA is retained to set the capture point).

to compute commanded gamma as indicated:

(The original

TMPI is used

TMPI = SLIM( VSTRA, (LHDC * KHD) )

TMP2 = RTOD * TMPI / (LIMGS * KHD)

TMPI is then multiplied by either KALFA or KHCAS depending on

whether the command is _fly up' or _fly down' respectively. The

vertical acceleration command (VERSTR) is computed as:

VERSTR = TMPI - VSTRB

Where: VSTRB = HDCF * KHD.

Finally, if AUTOE and VERPTH are both true, GAMCMD is set to TMP2.

Further, if bit 0 of VSTSEL is set, the path segment flight path

angle times the along track acceleration (FPA * VGSDOT) is added to
VERSTR. If bit I of VSTSEL is set, GAMCMD is also set into NCL2.

Otherwise, the Programmed Flight Path Angle (PFPA) is set into

NCL2. If GUID3D is false, VBCFLG is set true and VERSTR is zeroed.

GLIDE SLOPE ENGAGE / TRACK MODE

The Glideslope Engage logic is next evaluated. Initially the

local glideslope enable flag (VTMP) is set false. If a MLS type

capture is indicated (MLSM is true), and land mode is requested

(LANDR true), the MLS glideslope profile is computed as follows:



192

XDIST = XHAT - XGPIP

ZPROF = tan(GSA) * XDIST - HGPIP

DELTH = ZHAT - HGPIP

Whe re : XHAT is the X distance from the A/C

to the Azimuth antenna;

XGPIP is the X distance from the GPIP to the

Az antenna;

ZHAT is the aircraft height above the MLS plane;

HGPIP is the height of the GPIP

above the MLS plane.

The height error limit for capture (DHLIM) is then calculated as:

DHLIM = 15

DHLIM = .00349 * XDIST

for XDIST < 4300;

for XDIST >= 4300.

If IDELTHI is less than .54 DHLIM, VTMP is set true if LOCE is

true. (Glideslope engage is not permitted until the localizer is

engaged). If MLSM is false, VTMP is set when IGSDEVI is less than

.1085 degrees and LOCE is true.

Finally, if GSARM and VTMP are both true and IDLPSII is less

than 90 degrees, The vertical beam sensed (VBS) and glideslope

engaged (GSENG) flags are both set true. With GSENG and AUTOE both

true, a ten second countdown is initiated to set the glideslope

track flag (GSTRK), and subroute PAL is called to compute the

vertical acceleration command for glideslope capture and track

(GSCMD). Note that GSTRK is never set in the CWS modes since it

affects only the calculation of GSCMD, which is used only in AUTO

mode. With GSENG or AUTOE false, the counter is reset to 10

seconds.

The next section selects the vertical acceleration (VACMD),

commanded gamma for display (GAMC) and throttle feed forward (NCL2)

terms, to the extent that these haven't already been set.

ALTSEL:

VACMD

VACMD

= ASC

= VACMD + SLIM((ASC - VACMD), 0.25)

(ALTIN = 0)

(ALTIN > 0)

Where: ASC is the altitude mode acceleration command;

ALTIN is a counter set by MSPLGC when the altitude

or flight path angle knob is turned.

FPASEL:

VACMD = DFPAHM

VACMD = VACMD + SLIM((DFPAHM - VACMD), .25)

SELFPA = FPASUM

NCL2 = FPASUM

GAMCMD = FPASUM

(ALTIN = 0)

(ALTIN > 0)

(AUTO mode)

(AUTO mode)

Where: DFPAHM is the flight path angle mode accel command;

SELFPA drives the gamma reference bar on the PFD;

NCL2 is the throttle feed forward command;



193

GAMCMDdrives the gamma wedges on the PFD (AUTOmode).

GSENG:
VACMD = GSCMD
SELFPA = -GSA

NCL2 = -3.0

GAMCMD = GAMMA

GAMCMD = RTOD* (GSCMD + 1.56*HDCF)/ (I.56*LIMGS)

(FLARE mode)

(not FLARE)

Where: GSCMD is the land mode vertical acceleration command;

GSA is the nominal glide slope for the selected

runway.

VERPTH:

VACMD = VERSTR

SELFPA = PFPA

Whe re : VERSTR is the 3D mode acceleration command;

PFPA is the programmed flight path angle for the path.

In final processing, VACMD is limited to 5 fps/second (if not

GSENG), GAMCMD is conditionally passed through a rate limited

filter (if AUTOE and not FLARE and bit 2 of VSTSEL is set) before

setting into GAMC, and GAMCMD is converted to a rate limited gamma

dot command (for use in VCWS altitude hold).

GLOBAL INPUTS: ALFAV, ALTARM, ALTCOR, ALTHLD, ALTIM, ALTSEL,

ALTSUM, ATE, AUTOS, AUTOE, DLPSI, FLARE, FLPNDX, FLPPOS,

FPA, FPASEL, FPASUM, GAMC, GAMMA, GSARM, GSDEV, GSENG,

GSFPS, GSTRK, GUID3D, HDCF, HDTC, HER, HGPIP, ICM, KALT,

KHCAS, LANDR, LFCFLG, LOCE, MLSM, MODEX, NVVMOD, PFPA,

PGAMC, PITCH, PSTALT, PSTFPA, SACVIB, SQUAT, TANGSA,

TOG100, VACMD, VCWSE, VERPTH, VSTSEL, XGPIP, XHAT, ZHAT

GLOBAL OUTPUTS: ALB, ALTSUM, ALW, ALWMARG, DELALT, DELTH, EXPFRC,

FPASUM, FADERS, FLPPF, FPASUM, GAMC, GAMCMD, GAMLIMI

GSENG, GSTRK, KHCAS, KALFA, LFCFLG, NCL2, SELFPA, SHAKER,

VACMD, VBCFLG, VBS, VERSTR, VSTRA, VSTRB



194

MODULENAME:
FILE NAME:
PROCESS:

PAL (Pitch Auto Land)
VERCMD.FOR
FCFAST

PURPOSE: Compute the vertical acceleration
Glideslope Engaged mode.

command for the

CALLED BY: VERCMD
CALLING SEQUENCE:CALL PAL(GSCMD)
CALLS TO: None

DESCRIPTION:
This procedure provides the vertical steering command (GSCMD)

for both ILS and MLS autoland. No filtering is done if MLSM is
true, since the input (DELTH) is derived from filtered quantities.
In ILS mode, a lower time constant filter is used during glideslope
acquisition than is used once glideslope track (GSTRK) is set by
VERCMD. Filter initialization is performed when the glideslope arm
discrete (GSARM) is true. Since this routine is called only when
glideslope engage (GSENG) is true, and GSARM is cleared by
procedure MLOGwhen GSENGis true, GSARMcan be true only on the

first pass after selecting land mode. Initialization is also

performed when AUTOS is true to smooth the transition when the

pilot has hand flown the aircraft into GSENG in VCWS mode, then

selected AUTO mode.

The following equations are evaluated:

If MLSM is true

GSGPA = 0.0666 * DELTH

GSPF = 1.06 * GSGPA

Where: DELTH is the MLS beam error in feet;

GSPF is the vertical speed command in K*fps.

Else

GSGPA = 0.0666 * GPGSDV

If GSARM is true

GSPF = 1.06 * GSGPA

Else if GSTRK is true

1.06

GSPF =

15 S 4 1

(GSGPA + tan(GSA) * GS_ps+ HDCF)



195

Else

GSPF =

1.06

1.5S+I

GSGPA

Where : GPGSDV is the gain programmed localizer deviation in

feet;

GSA is the glide slope angle in degrees;

HDCF is complementary filtered h dot in fps.

End if

Unconditionally:

ALC = 4. (GSPF + 0.39 HDCF)

Where: ALC is the proportional path command output in K*fps.

If GSARM is true

GSI = DECMD - ALC

Else

.28

GSI ....

S

End if

GSGPA

Where: DECMD is the previous iteration's elevator command output;

GSI is the proportional path command output in k*fps;

GSI is limited to a max value of 80.

Finally, GSCMD = -(ALC + GSI)

Where: GSCMD is the vertical acceleration command in fps/sec.

GLOBAL INPUTS: DECMD, DELTH, GPGSDV, GSARM, GSINS, GSTRK, HDCF,

MLSM, TANGSA

GLOBAL OUTPUTS: None



196

MODULENAME:
FI LE NAME:
PROCESS:

ELEVP (Elevator Control Processing)
ELEVP.FOR
FCFAST

PURPOSE: To calculate the elevator command and the stabilizer trim

discretes.

CALLED BY: FCFAST

CALLING SEQUENCE: CALL ELEVP

CALLS TO: PAFD, PFFD, PVPC, STABT, VTFCL

DESCRIPTION:

ELEVP is the main program for the longitudinal axis control

laws. It computes certain global variables (HDDF, HDILS, KQ,

PDCOL, PHIVS, QFBI), calls mode specific processing to compute the

local elevator command (DECGL) and the trim discretes (TRIMT,

TRIMD), then outputs DECMQ (Delta Elevator Command Minus Q. Pitch

rate (Q) complementation is accomplished externally (at the 10 msec

rate) through an easy-on, based on DECGL. Calculations for manual

electric mode (MANEL) and the rollout (RLOUT) submode of Land

Engage (LANDE) are accomplished entirely within ELEVP.

Only two modes are available from the forward flight deck for

elevator commands: pre-engage (PRENG) and forward flight deck

attitude control wheel steering (FFDE). During the PRENG mode, the

autopilot is disengaged. The computational requirements for the

elevator command for the FFD mode are described in sub-procedure

PFFD.

There are five distinct modes that can be flown from the

research flight deck (RFD): MANual ELectric (MANEL), Attitude

Control Wheel Steering (ACWS), Velocity Control Wheel Steering

(VCWS), AUTO, and LAND, with LAND having separate computational

requirements for glideslope tracking (GSENG), flare (FLARE) and

roll-out (RLOUT). The overall DSD showing the computational

requirements for the elevator command for these RFD modes is given

in Appendix A of this document. The overall static gains are

included in these figures.

Procedure ELEVP is the driver for all the sub-procedures which

comprise the longitudinal axis control law. It consists of

initialization routines, signal preprocessing and procedure calls.

ELEVP begins with a check for a change in flight mode since

the last iteration. If there was such a change, the easy-on/off

switch is initialized (INIT = TRUE) to gradually phase in the

elevator command for the new mode. Also, the high rate Q feedback

gain (KQ) is set to zero. This gain is reset to the appropriate

value for those modes which use it by mode dependent logic. If the

current mode is PRENG or if the IC Mode (ICM) flag is set, the

filters and command outputs are initialized. Then, for all modes,

pitch rate (Q) is filtered and stored in QFBI (a 16 second washout)

and QX (the 16 second lagged output used by OUTIOM). Versine of

bank angle is approximated and stored in PHIVS. Filtered vertical

acceleration (HDDF) is then computed, the ILS vertical velocity

(HDILS) is initialized or computed as required, and the Flare first

pass flag, FLARE_l, is updated. Next, the column input (DCOL) is



197

passed through a variable deadzone to produce PDCOL, which is used
locally and also sent to the displays computer, where it used to

actuate the out-of-detent indicators on the Primary Flight Display.

If PDCOL is non-zero, the out-of-detent flag (PCWOD) is set.

Subsequently, ELEVP processes the active mode as indicated by the

value of MODEX. The output of the mode specific processing is

DECGL, which is passed through the 1/2 second easy-on/off switch

initialized at ICM or mode change. Except for LANDE, Decrab

(DECRB), and FLARE, the final elevator command is phased in as

DECMQ (Delta Elevator Command Minus Q. Note that Q complementation

is performed in OUTIOM for all modes except FLARE and MANEL.) For

LAND submodes, the switch in control law source (and setting of

INIT) occurs at Glide Slope Engage (GSENG). The next switch occurs

at FLARE, but the control law itself takes care of the easy-on.

For PRENG mode, DECGL is set equal

position (DEPOS). This synchronization

transient at autopilot engage.

to the elevator servo

is to minimize the

For MANEL mode, the deadzoned column position input (PDCOL) is

multiplied by -6.96, and the result stored in DECGL.

For FFDE mode, the sub-procedure PFFD is called to compute
DECGL.

For ACWSE and VCWSE modes, sub-procedure PAFD is called.

For AUTOE mode, sub-procedure PVPC is called.

For LANDE mode, PVPC is called and the easy-on/off switch is

disabled. This permits the intermediate elevator command DECGL to

pass directly through to the output DECMQ.

For DECRB and FLARE modes, the variable-tau flare control law,

sub-procedure VTFCL, is called. If the FLARE flag is false, sub-

procedure PVPC is also called. In this mode also, the easy-on/off

switch is disabled.

For RLOUT mode, the elevator is driven to zero by a one second

lag filter for nose wheel letdown. For all high speed modes (FFD,

ACWS, VCWS, AUTO), the summation of pitch rate feedback is done

externally at the I0 Msec rate, using the ELEVP outputs KQ, QX,

DECMQ, and the I0 Msec pitch rate (Q) input.

To conclude ELEVP processing, the stabilizer trim sub-

procedure, STABT is called unconditionally.



198

GLOBAL INPUTS: ACCB, DCOL, DECRB, DEPOS, DZNE, FLARE, HDCF, HDD,
HRAD, ICM, MODE2, MODEX,MSWI, MSW6,PRENG, Q, ROLL, ZDH,
ZDDH

GLOBAL OUTPUTS:
TRIMT

DECMQ, HDILS, KQ, MODEX, PDCOL, QFBI, QX, TRIMD,



199

MODULENAME:
FILE NAME:
PROCESS:

PFFD (Pitch Forward Flight Deck)
ELEVP.FOR
FCFAST

PURPOSE: To calculate the elevator command for Forward Flight Deck
ACWSmode.

CALLED BY: ELEVP
CALLING SEQUENCE:CALL PFFD
CALLS TO: None

DESCRIPTION:
This routine computes the delta elevator command in the

forward flight deck CWSmode. The column force (FCOL) is processed
through a +/- 5 lb. deadzone to yield FCOM. If FCOM is non-zero,
the Pitch Control Wheel Out of Detent flag (PCWOD) is set. If IC
mode or first pass in FFD mode, all filters are initialized and the

pitch command integrator (PINT1) is set equal to pitch attitude.

Otherwise, FCOM is gained and filtered to give FFDI. If the

elevator authority limit flag (DEAL) is false, FCOM is multiplied

by .1935 and integrated to give PINT1, with a limit of +/- 40

degrees pitch command. The error signal (PFFDE) is calculated by

subtracting PINT1 from PITCH. This error is integrated only if

PCWOD is false and the bank angle command (PHICMD) is less than 5

degrees. The basic elevator command, FCWSE is computed as the

gained sum of PINT2, PFFDE and FFDI. This signal is compensated by

PHIVS to produce FDED, which is then used to set the elevator

authority limit flag (DEAL) if the effective elevator command is

greater than 15 degrees. Finally, FDED is attenuated as a function

of KV and output as DECGL. KQ is set to 2.16 times KV for use by
OUTIOM.

GLOBAL INPUTS: FCOL, KV, PHICMD, PITCH

GLOBAL OUTPUTS: KQ



200

MODULE NAME :

F I LE NAME :

PROCESS :

PAFD (Pitch Aft Flight Deck)

ELEVP.FOR

FCFAST

PURPOSE: To calculate the elevator command for the Aft (Research)

Flight Deck ACWS and VCWS modes.

CALLED BY: ELEVP

CALLING SEQUENCE: CALL PAFD

CALLS TO: None

DESCRIPTION:

This procedure computes the delta elevator command (DECGL) and

pitch/gamma command (GAMC - used to display the commanded angle on

the Primary Flight Display) for both the velocity and attitude CWS

modes. It provides the DECGL command by direct pilot control over

the commanded flight path angle (GAMMA) for VCWSE, or the pitch

attitude (PITCH) for ACWSE. This may be accomplished by column

input (DCOL), which provides a rate command proportional to column

deflection, modified by ground speed to provide a nearly constant

vertical acceleration per inch of column deflection (0.2 g / in).

Alternatively, pilot input may be made through the vertical trim

switch (VATRM, VATRD) which results in a constant 0.5 deg/sec rate

command. When the pilot input is removed, the command integrator

(PGAMC) remains constant. Additional command options are as

follows. If the Go-Around Switch (GAS) is depressed, VCWS mode is

forced (assuming the research (aft) flight deck was engaged), and

PGAMC is driven to 2.0 degrees fly up. Also, when in VCWS mode,

setting commanded gamma to approximately zero causes altitude hold

mode to be entered (ALTHLD true). In this mode, the actual

altitude at the time ALTHLD is engaged is maintained. Logic in

procedure VERCMD monitors the altitude deviation and provides a

gamma rate command (GAMCMD) which is integrated into PGAMC. In

this mode, the displayed gamma (GAMC) is driven to zero and a bit

is set in FCFLGS which causes the center diamond in the gamma

wedges on the PFD to be raster filled as a mode engaged indicator.

For the following discussion, it would be helpful to refer to

either the source code or the Digital System Diagram (DSD).

Processing begins by selecting the reference angle (PAFB) according

to flight mode. If in ACWS, the reference angle is PITCH and the

command angle limit computed by VERCMD (GAMLIM) is increased to

produce an appropriate pitch angle limit. PDCOL, the deadzoned

DCOL input is then programmed with ground speed such that the

commanded normal acceleration per inch of column input remains

constant over the speed range. The mode first pass flag (INIT) or

any control input causes ALTHLD to be cleared. Also, INIT or SQUAT

causes PGAMC to be synchronized to the selected angle reference

(PAFB). If first pass in the mode, further initialization

processing is performed. Otherwise, processing continues by

evaluating the submodes.

If GAE (Go-Around Engaged) is set, then a 2 degree bias (GAC)

is integrated into GAMC until the 2 degree fly-up is achieved. At

this point GAE is reset. GAE is also reset if a column input is



201

made. If GAE is false and PCWOD is true, GAMDC, used in the ALTHLD

checks, is set to the previous value of filtered column input,
DCLFI. If PCWOD and GAE are both false, the Vertical trim switches

are checked. If VATRM (trim up) or VATRD (trim down) is true, +/-

0.5 deg/sec is integrated into PGAMC and GAMDC is set

appropriately. If none of the above, the possibility of entering
altitude hold mode is checked: if VCWS mode and altitude above

ground level is greater than 300 feet and PGAMC is less than one

degree, the previous values of PGAMC and GAMDC are summed. If the

result is less than .25 deg or passes through zero, the ALTHLD

discrete is set. This causes VERCMD to freeze its altitude

reference signal and begin computing a gamma dot command (GAMCMD)
based on altitude error and altitude rate.

Finally, if ALTHLD, DCLFI is set equal to GAMCMD and otherwise

computed as a 0.3 sec lag on gained PDCOL. PGAMC is computed as

the integral of DCLFI, limited to +/- GAMLIM. PDCOL is then

degained if negative and an overspeed condition exists (KHCAS less

than 1.0) and passed through a .093 second lag to produce DCOLF.

DCOLF is used in a parallel proportional path to improve response

to column inputs at low speeds.

In the integral path, GAMC is subtracted from either GAMMA or

PITCH to produce the error signal, GAMER. Since DCOLF is degained

by KV and GAMER is not, GAMER is the primary controlling term at

high speeds (CAS > 235 kts). (Note: in the present implementation,

GAMER is used for reference only. The anologous term used in the

control law is _TEMP', computed later.) Next, NCL2, the throttle

feed forward term, is set equal to PGAMC unless GAE is true, in

which case it is set to GAC (2.0 deg). PAFTMP in the proportional

path is computed as KV times the negative of 9.4 DCOLF plus PHIVS,
and KQ is set to 4.32 times KV.

In VCWS the damping term GAMD is set to computed gamma dot

(with a 100 knot floor imposed on GSINS) unless SQUAT is true, in

which case it is set to zero to keep the elevator quiet during

taxiing. GAMD is then summed with QFBI and 1.85 times DCOLF and

passed through a one second lag to produce GAMDF. Note that QFBI

is also used directly for damping, but this is added to the

elevator command in OUTIOM. In ACWS, GAMD is set to QFBI and GDFP
is set to zero.

TEMP is now computed. This term will be equal to GAMER unless

commanded gamma is negative and an overspeed condition exists, in

which case the effective commanded gamma is driven towards zero to

pull the nose up.

The gained sum of TEMP and GAMD is then integrated to produce

ERINT, which is used to improve tracking of small angular errors.

ERINT is IC'd on first pass and held constant when the difference

between the elevator command and the elevator position (DEPOS) is

greater than one degree. Finally, the intermediate terms ERINT,

TEMP, GDFP, and PAFTMP are gained and summed to produce DECGL,
which is returned to ELEVP.



202

GLOBAL INPUTS: ACWSE, ALTHLD, DECMD, GAE, GAMCMD, GAMLIM, GSINS,

HDCF, HTDZ, KHCAS, KV, NAV64K, PDCOL, PITCH, QFBI,

VATRD, VATRM, VCWSE

GLOBAL OUTPUTS: ALTHLD, DCOLF, ERINT, GAE, GAMC, GAMD, GAMER,

GAMLIM, KQ, LFCFLG, NCL2, PDCOL, PGAMC



203

MODULE NAME:

FILE NAME:

PROCESS:

PVPC (Pitch Vertical Path Command)
ELEVP.FOR

FCFAST

PURPOSE: To calculate the elevator command for the Aft (Research)

Flight Deck AUTO modes.

CALLED BY: ELEVP

CALLING SEQUENCE: CALL PVPC

CALLS TO: None

DESCRIPTION:

This routine computes the elevator command DECGL for all AUTO

submodes except FLARE and RLOUT.

A vertical path command (EVPC) is derived as the difference

between the vertical acceleration command (VACMD) from procedure

VERCMD and the filtered vertical acceleration signal (HDDF). If

first pass in AUTO mode, INT2 is initialized so as to produce no

net change in DECGL this pass, and the first pass flag (PVPCI) and

the VCWS altitude hold flag (ALTHLD) are cleared. Otherwise, EVPC

is integrated whenever TRIMT is false (indicating stabilizer trim

is not active) or when the sign of EVPC differs from the sign of

the integrator output (INT2). INT2 is limited to +/- 20 degrees,

gained by .25, and summed with PHIVS and the original estimated

path command (EVPC) to produce EVPCS. This is gained by KV and

output as DECGL. KQ is then output as 2.16 times KV for use in

OUTIOM.

GLOBAL INPUTS: GSENG, KV, TRIMT, VACMD

GLOBAL OUTPUTS: ALTHLD, KQ



204

MODULE NAME:

FILE NAME:

PROCESS:

VTFCL (Variable Tau Flare Control Law)

ELEVP.FOR

FCFAST

PURPOSE: To calculate the elevator command in FLARE mode.

CALLED BY: ELEVP

CALLING SEQUENCE: CALL VTFCL

CALLS TO: None

DESCRIPTION:

VTFCL is called when DECRB is true. This routine initializes

itself and sets the FLARE flag at descent through 42 feet of

altitude (HTDZ for MLSM, HEAD for ILS). The variable-tau law then

functions to drive the commanded rate of descent exponentially to

approximately 2 fps at touchdown.

First, values of altitude and vertical acceleration are

selected depending on MLS Switch 1 (normally false). HT is set to

the selected altitude plus I0 feet (which sets the nominal

touchdown sink rate: 10. * .6616 / 3.25 = 2.04), and the damping

term HD2 is set to the selected vertical acceleration plus 7.6

times filtered pitch rate (QFBI). HT is then monitored to set the

FLARE discrete.

Once FLARE is true, the subroutine proceeds by computing the

ground speed compensation term (XD = 1.0 @ 120 kts), and the flare

error term (DEFLI). Note that if the aircraft is on a nominal 3

degree glideslope, DEFLI will equal zero at flare initiation.

On the first pass of FLARE, the filters and integrators are
initialized such that the first calculation of DECGL will result in

zero transient error. Errors in the sink rate are then corrected

by use of a complementary filter using HD2 and filtered pitch rate

(QFBI). The result is stored in HDDQ. The output of the FTAUF3

filter, which is initially set to zero and ramps to -4 degrees to

set the elevator command bias, is added to DEFLI and HDDQ. This,

multiplied by KV, yields the output DECGL. NCL2, the nominal gamma

command to ATHCL, is set to zero, and KQ remains zero, having been
cleared in ELEVP mainline code.

GLOBAL INPUTS: FLARE, GSINS, HDD, HDILS, HRAD, HTDZ, KV, MSWI,
QFBI, ZDDH

GLOBAL OUTPUTS: FLARE, NCL2



205

MODULE NAME:

FILE NAME:

PROCESS:

STABT (Stabilizer Trim Logic)
ELEVP.FOR

FCFAST

PURPOSE: To calculate the stab trim discretes

CALLED BY: ELEVP

CALLING SEQUENCE: CALL STABT

CALLS TO: None

DESCRIPTION:

This routine determines the stabilizer trim command and the

on-ground discrete, GRD. GRD is set when SQUAT becomes true, and

remains set as long as the radar altitude remains less than i0
feet.

The trim discrete, TRIMT, is cleared if GRD, MANEL, or PRENG

are set. If the magnitude of the auto stabilizer trim pot input
(ASTP) is less than one degree, then TRIMT is also cleared. If its

magnitude is greater than one degree and less than 1.33 degrees,

TRIMT is not changed. If ABS(ASTP) remains greater than 1.33 for

24 cycles, then TRIMT is set true. If ASTP is negative and TRIMT

is set, the trim down discrete, TRIMD, is set, otherwise, TRIMD is

cleared. The stabilizer is trimmed nose up if TRIMT is true and

TRIMD is false, and trimmed nose down if TRIMT is true and TRIMD is
also true.

GLOBAL INPUTS: ASTP, HRAD, MANEL, PRENG, SQUAT

GLOBAL OUTPUTS: GRD, TRIMD, TRIMT



206

MODULENAME:
FILE NAME:
PROCESS:

SPDCMD(Speed Command)
SPDCMD.FOR
FCFAST

PURPOSE: To calculate the along track acceleration command for the
autothrottle modes.

CALLED BY: FCFAST
CALLING SEQUENCE:CALL SPDCMD
CALLS TO: LNITRP

DESCRIPTION:
This module computes terms associated with overspeed

protection and computes the autothrottle acceleration command
(ATCMD) for air speed (CAS) and ground speed (GS) hold modes as
well as the time path (4D) mode. In the event that maximum
allowable mach is reached, it in effect operates in mach hold mode
by computing the equivalent CAS which will prevent the maximum mach
number from being exceeded.

Initial processing computes the CAS to TAS ratio (KCTOT), the
CAS to MACHratio (CMRAT) and the filtered wind speed (WSF). CMRAT
is computed using an alpha/beta filter to smooth the term without
introducing a lag. If PNAV64 is false (groundspeed below 64
knots), all filtered terms are held in the IC state and KCTOT is
set to 1.0.

The next section of code packs the _nose gear down' discrete
(GEAR) in the FCFLGS word for transmission to displays, and sets
lower maximum values for MACH and CAS when the gear is down.
MXMACHis set to .82 vice .84, and CASTAB(1) (flap placard limit
for flaps 0) is set to 310 vice 340 knots. The maximum permissible
CAS (CASHI) for the existing flap position is then computed via a
call to the linear interpolation routine, LNITRP.

The operator selectable CAS and mach limits (MAXSPD) are
processed next. These were originally intended for a controlled
profile descent and were settable from the CDU, but this capability
was not included in the new CDU code. Setting the MAXSPDelements
via the VIEW utility is still useful for test purposes. Neither

element is used unless MAXSPD(2) is non-zero. If so, element 2 is

limited to a min of 0.4 and a max of MXMACH, then set into MXMACH.

MAXSPD(1) is then limited to a min of 1.2 * IASREF and a max of

CASHI and the result is set into CASHI. If the CAS equivalent of

MXMACH is then less than CASHI, CASHI is set to CMRAT * MXMACH.

Provision is made to use either raw CAS or filtered CAS

(FMCASF) for input to the speed control equations (SELCAS). In

practice, only CAS has been used. The intent of the filter was to

reduce throttle activity by rejecting turbulence without

introducing significant lag. The purpose of the wind

speed/direction term is to reduce the standoff that can occur when

turning into or away from the wind. This term is zeroed when

DPERRF (set by HNAVSL when navigation errors are sufficiently large

to cause bogus wind estimates) is true. Although the filter works

reasonably well in normal turbulence, further testing indicates it

does not respond well to wind shear (though it errs in the



207

direction of safety), so it should probably be removed or replaced.
Overspeed control is effected through the use of two terms:

KHCAS, used in either VERCMD(auto modes) or ELEVP (CWS) to control
gamma, and KDCKH, used to control the throttle. Once SELCAS comes

within 15 knots of CASHI, the difference between CASHI and SELCAS

is converted to the ft/sec equivalent (times 0.i) as given:

TMPI = KDCAS * (CASHI - SELCAS) / KCTOT

Where: KDCAS = 0.16878 = KTOFPS / 10.

This term is then concatenated with along path acceleration, gained
and limited:

TMP2 = SLIM (0.125* (TMPI - ABACC), 0.2)

Where: ABACC is the body mounted accelerometer _x'

acceleration, rotated and biased in the CAS filter.

TMP2 becomes negative when the present speed and acceleration would

cause the limit speed to be reached within i0 seconds, and is

otherwise positive. If not within 15 knots of CASHI, TMP2 is set

to 0.I. If the option is enabled (bit 15 of ATHSEL is zero), TMP2

is integrated into KDCKH which is initialized to 2.0 and limited to

+/- 2.0. KHCAS is KDCKH - 0.5, limited to the range 0.0 to +i.0.

If the option is not enabled, or if the autothrottle is not

engaged, KDCKH is forced to 2.0, thus forcing KHCAS to 1.0.

If SELCAS is less than 120 knots, KVCAS is set to 1.0.

Otherwise, KVCAS is computed as 1.2378 - 1.98165E-3 * SELCAS. The

basic airspeed gain (KV) is then computed as the square of KVCAS.

KV varies from 1.0 at 120 knots to 0.32 at 340 knots (maximum speed

for the Research Flight Deck). KV is used in procedure ELEVP for

the elevator command (DECMD) and in procedure LATRL for the aileron

command. KVCAS may optionally be used in CWS modes for the aileron

command.

Ground speed / Time path (4D) options are computed next. The

nominal ground speed command in feet per second (SDC) and the

average acceleration along a path segment (SDD) are computed by

procedure HVGUID when speeds have been entered in all waypoints of

a 3D path. If SDC is zero (indicating ground speed guidance not

possible), the autothrottle command derived from ground speed mode

(SCMD) is set to zero. Otherwise, if GUID4D is false (indicating

not time mode), SCMD is computed as follows:

SCMD = 0.I * (SDC - GSFPS) + SDD

Where: GSFPS is the present ground speed in feet / second.

If GUID4D is true, SCMD is computed by procedure TGUID using the

nominal ground speed plus a function of the time error. In either

case, SCMD is used for the calculation of ATCMD when time path mode

is selected on the Control Mode Panel (TIMPTH is true). No over-

or under- speed protection is provided in these modes, so a check



208

is made here to see if the ground speed command is safe. If SELCAS

is less than the reference airspeed (IASREF), or if ground speed is

more than 10 knots less than IASREF, or if either KALFA or KHCAS is

less than 0.5, the SPDLMT flag is set and otherwise cleared. When

SPDLMT is true, logic in procedure MSPLGC causes a demode to CAS

engaged with TIMPTH armed.

Airspeed (CAS) hold mode calculations begin by selecting the

reference airspeed and storing it in TEMP. This will be IASSUM

unless it is greater than CASHI, in which case CASHI is used. For

negative commanded flight path angles (as indicated by NCL2), CASHI

is first decreased by the magnitude of NCL2 in degrees. This is to

give a bit of additional cushion when throttle reduction might not

have much effect on airspeed. If airspeed hold mode is neither

armed nor engaged (IASSEL and IASARM both false), IASSUM is set to

SELCAS rounded to the nearest knot and DELCAS is set to zero.

Otherwise (IASSEL or IASARM is true), the airspeed error (DELCAS)

is computed as TEMP - SELCAS. TMPI, the actual input to the

throttle command calculation, is first set equal to IASREF - I0. -

GSINS (the groundspeed floor calculation). If DELCAS is greater

than (more likely to produce a positive acceleration than) TMPI,

TMPI is set to DELCAS.

Next, if alpha protection via throttle control is enabled (bit

0 of ATHSEL is set) and AUTO mode is true and KDCALF is less than

2.0, some throttle command adjustment will be done as follows. The

temporary TMP2 is set to KDCALF - 1.0. If this quantity is

negative (implying KALFA is less than 1.0), TMP2 is set to

10. TMP22, i.e, a positive, exponentially increasing value. If

TMP2 is then greater than TMPI, TMPI is set equal to TMP2. If

(KDCALF - 1.0) is positive (thus between 0.0 and 1.0) and TMPI is

negative (a deceleration command), TMPI is set to TMPI * TMP22,

exponentially reducing TMPI as TMP2 approaches zero.
If KDCKH is less than 2.0 (possible only if overspeed

protection is enabled), TMP2 is set to KDCKH - .5. (Note: this is

a coding error. It should be set to KDCKH - 1.5). If the result

is negative, TMP2 is reset to -I0. * TMP22. If TMP2 is then less

than TMPI, TMPI is set equal to TMP2. If the result is positive

(which should imply a value between 0.0 and 0.5) and TMPI is

greater than zero (an acceleration command), TMP2 is set to

TMPl * 2. TMP2, reducing TMPI as TMP2 approaches zero. (The actual

code will produce a window where TMPI is increased when it should

be decreased).

Finally, if TIMPTH is true, ATCMD is set to SCMD, and

otherwise set to KDCAS * TMPI, where KDCAS = 0.16878. In either

event, ATCMD is limited to +/- 5.0 fps/sec.



209

GLOBAL INPUTS: ABACC, ALT, AUTOE, ATE, ATHSEL, CAS, DPERRF,

FLPNDX, GEAR, GSFPS, GSINS, GUID4D, IASREF, IASARM,

IASSEL, IASSUM, KALFA, KDCALF, LFCFLG, MACH, MAXSPD,

NAV64K, NCL2, PNAV64, SDC, SDD, SCMD, TIMPTH, TK, WD, WS

GLOBAL OUTPUTS: ATCMD, DELCAS, FMCASF, IASSUM, KCTOT, KHCAS, KVl

KVCAS, LFCFLG, MAXSPD, PNAV64, SELCAS, SCMD,

SPDLMT



210

MODULENAME:
FILE NAME:
PROCESS:

ATHCL (Autothrottle Control Law)
ATHCL.FOR
FCFAST

PURPOSE: To calculate the throttle command.

CALLED BY: FCFAST
CALLING SEQUENCE: CALL ATHCL
CALLS TO: None

DESCRIPTION:
ATHCL is called unconditionally on each cycle of FCFAST.

There are three operating modes which depend on autothrottle
engagement (ATE) and on the state of the FLARE flag. The routine
first evaluates the indicators for autothrottle engagement and sets
the ATE flag accordingly. Then the throttle position aft limit,
AFTLIM, is set to zero during flare or whenever the airspeed is
greater than 250 knots. Otherwise, it is increased as a function
of airspeed in order to reduce "spool-up" time of the engines.

AFTLIM = i0 degrees,
= .2 (250. - CAS),
= 0,

for CAS < 200 knots.
for 200<=CAS<=250 knots.
for CAS > 250 knots.

The complementary filtered longitudinal acceleration signal
(NCI01) is derived by washing out the inertial longitudinal
acceleration (VGSDOT) with the true airspeed signal (TASFPS).

TEMP =

NCI01 =

5. (TASFPS - NCI01)

NCI01 + DELTAT (TEMP + VGSDOT)

This signal is then passed through a turbulence filter to limit

high frequency components:

TEMP = TEMP - NCI02, limit = + I.

NCI02 = NCI02 + (.2 DELTAT) TEMP

NCLI, the longitudinal acceleration damping signal, is

computed as the sum of VGSDOT and NCI02, and limited to +/-16.0

feet per second per second (fps2).

If the autothrottle is engaged (ATE) and the FLARE flag is

set, then the raw commanded autothrottle position rate, APCPRM, is

set to -2.8. This will cause the position command integrator,

NCI03, to be ramped back to zero at a 2.8 degrees per second rate.

If not ATE, APCPRM is set to i0.0 if the autothrottle feedback

flag (ATFDBK) is set, otherwise, it is set to -i0.0. This causes

the autothrottle command to be synchronized to the throttle handle

position.

If (ATE • .NOT. FLARE), then a series of actions occur.

NCL3F, the vertical acceleration command to throttle feed forward

signal is computed as:



211

NCL3F = NCL2 *
(S + .25) (.5S +i)

Where: NCL2 is the nominal gamma command (in AUTO or VCWS),
or the nominal pitch command (in ACWS). This filter is
reinitialized whenever a mode change request occurs which could
change the reference angle.

The raw throttle position rate command, APCPRM, is calculated
as:

APCPRM= 3.0 (VSPHI - LAGI6S + ATCMD- NCLI
+ ATHFF * NCL3F)

Where: VSPHI = 5 - (5 cos(ROLL))

LAGI6S = last cycle filter output

ATHFF = the gain on NCL3F (nominally 0.35)

VSPHI is then passed through a 16 second washout filter to generate

a new roll compensation signal:

LAGI6S = e**(-.05/16.0) (LAGI6S - VSPHI) + VSPHI.

The engine pressure ratio (EPR) limit calculation then

controls the throttle position command so as not to exceed the

limits for the engine with the highest current EPR. If the

throttle command is positive, the gain (DELEPR) is calculated as

the difference between the maximum EPR (MXEPR) and EPR, gained by

3.3333, and limited to 1.0. APCPRM is then gained by DELEPR. This

attenuates the rate command as the engine approaches maximum

output. However, if one EPR already exceeds MXEPR, (DELEPR less

than zero), then the raw throttle command is immediately set to 10

times DELEPR.

For all modes, APCPRM is integrated to form NCI03, then

limited to a value between 60 degrees and AFTLIM. Finally, the

intermediate command is conditionally summed with the damping term

to produce the final autothrottle position command, APCDG.

APCDG = 2.4 NCLI - NCI03

If FLARE is set or CAS is greater than 250 knots,

APCDG = -NCI03.

GLOBAL INPUTS: ACWSS, ATCMD, ATE, ATFDBK, AUTOS, CAS, CROLL,

EPRI, EPR2, FAIL2, FLARE, GRD, IASSEL, ICM, MANEL, MXEPR,

NCL2, TASFPS, TIMPTH, VCWSS, VGSDOT

GLOBAL OUTPUTS: APCDG, ATE, CRSET, DSPLF



212

MODULENAME:
FILENAME:
PROCESS:

PURPOSE:

DSPOT (Displays Output)
DSPOT.FOR
FCFAST

To compute analogs of the glideslope and localizer
deviation variables to be used by the Displays task.

CALLED BY: FCFAST
CALLING SEQUENCE: CALL DSPOT

CALLS TO: GET CHAR

DESCRIPTION:

Prior to glideslope beam sensed, the vertical path deviation

(BETAH) is set to the negative of 3D guidance altitude error (HER).

Prior to localizer beam sensed, the localizer error (ETAH) is set

to the negative of 2D crosstrack error (XTK). BETAH and ETAH are

negated to make them compatible with the analogous ILS signals.

Once within .7 degree of the glideslope, BETAH is defined as:

For MLS or GPS mode:

BETAH = GSESCL * RTOD *

ZHAT + HGPIP

Then,

ETAH is

XHAT - XGPIP

- TANGSA

For ILS mode:

BETAH = GSESCL * GSDEV

Where: GSESCL is a selected gain to produce a

standard course width at the threshold.

until proximity to the antenna makes calculation impossible.

BETAH = 0.

Once within 2.5 degrees of the runway centerline,

defined as:

For MLS or GPS mode:

ETAH = LOCSCL * RTOD * (YPROF - YHAT) / XHAT

For ILS mode:

ETAH = LOCSCL * LOCDEV

Where: LOCSCL is a selected gain to produce a
standard course width at the threshold.

In any case, both BETAH and ETAH are limited to +/- 1000.



213

GLOBAL INPUTS: AIRPTS, DSTAT, GPLND, GSARM, GSDEV, GSENG, HER,

HGPIP, HRAD, LOCDEV, LFCFLG, LOCDEV, LOCVLD, MLSM, RLMLS,

SIMILS, TANGSA, XGPIP, XHAT, XTK, YHAT, YPROF, ZHAT

GLOBAL OUTPUTS: BETAH, ETAH, LFCFLG (DLBS,DVBS)



214

MODULE NAME:

FILE NAME:

PROCESS:

OUTIO (I/O Output Processing)
OUTIO.MAR

FCFAST

PURPOSE: To format 50 millisecond output data from OUTCOM for DMA
to DATAC SIR.

CALLED BY: FCFAST

CALLING SEQUENCE: CALL OUTIO

CALLS TO: None

DESCRIPTION:

OUTIO is called once per major frame at the end of FCFAST

major frame processing. It is responsible for formatting and

packing output data into a form readable by external aircraft

systems. Output data to be formatted is read from OUTCOM. OUTIO

also gathers data recording data for output.

OUTIO uses the following programmer defined macros:

i.) FLOAT - Scales and converts a floating point value

pointed to by R0 into a 16 bit integer and stores it at

the destination specified as an input parameter.

2.) BOOLI - Tests the byte pointed to by R0, and if set, will

set the specified bit in the packed discrete as indicated

by the input parameters.

3.) BOOL2 - Same as BOOLI with the addition that the packed

bit will also be set if the boolean LAMP is set.

GLOBAL INPUTS: All variables in OUTCOM.

GLOBAL OUTPUTS: DTC OUT



6.1 SIGNAL FAILURE DETECTION

215

MODULE NAME:

FILE NAME:

PROCESS:

DINUSE (Discrete In-Use Computations)
DINUSE.MAR

FCFAST

PURPOSE : To tell DISFD which discrete sensors it is

required to check at any given time.

CALLED BY: FCFAST

CALLING SEQUENCE: CALL DINUSE

CALLS TO: None

DESCRIPTION:

Based on the current flight mode and condition of the

aircraft, DINUSE sets the sensor-in-use bit (400 hexadecimal) of

the appropriate sensor status word. Each discrete signal is

allocated one status word. This bit is then detected by DISFD,

which checks the signal validity if the in use bit is set.

The DSTAT array consists of 18 words in the following order:

i. HRV

2. LANDS

3. AUTOS

4. VCWSS

5. ACWSS

6. GSVLD

7. LOCVLD

8. LAMPS

9. IATTV

I0. ADVAL

ii. LOCFS

12. INAVV

13. ASBV

14. ISBV

15. TSBV

16. unused

17. unused

18. unused

H-radar valid

Land select

Auto select

Velocity control wheel steering select

Attitude control wheel steering select

Glideslope valid
Localizer valid

Lamp select for FC functions on MCP

IRS attitude valid

Air Data computer valid

Localizer frequency select

IRS navigation data valid

Air Data serial bus valid

IRS serial bus valid

TDS serial bus valid (used by MLS)

GLOBAL INPUTS: DISPST, DLPSI, FCFLGS, FLARE,

LANDR, LOCFS, LOCVLD, MLSM, MODEX

GSVLD, ILSZON,

GLOBAL OUTPUTS: DSTAT



216

MODULENAME:
FILE NAME:
PROCESS:

SINUSE (Sensor In-Use Computations)
SINUSE.MAR
FCFAST

PURPOSE: To tell FDSTR which digital sensor signals it is required
to check at any given time.

CALLED BY: FCFAST
CALLING SEQUENCE:CALL SINUSE
CALLS TO: None

DESCRIPTION:
Based on the current flight mode and state of the aircraft,

SINUSE outputs four packed discrete words called SINUSO, SINUS1,
SINUS2, and SINUS3, which contain information on which sensors are
in use. This bit string is then unpacked sequentially into the
sign bit of the elements of the STFAIL array (bit 15 of SINUS0 to
bit 15 of STFAIL(1), bit 14 to bit 15 of STFAIL(2), etc.).
Subroutines FDSTR and F2CMP reference the STFAIL array either
directly or via the byte overlay STFBYT. The SINUS(i) words are
not otherwise used, but may be recorded or referenced via the VIEW
utility to see which sensors are marked _in use' at any time. The
sensor-to-bit assignments (and thus the STFAIL index assignments)
are shown below. For a description of the bit usage in an STFAIL
entry, see FAILCP.INC.

BI_.__T SINUS0 SINUS1 SINUS2

15 IR Q IR VE ADR HBARO

14 IR P IR W SPD ADR TAS

13 IR R IR W DIR ADR HDOT

12 IR AX HYB LATC ADR CAS

Ii IR AY HYB LONC ADR MACH

i0 IR AN IR HDG MAG ADR TAT

9 IR XDD HYB LATF ADR IND AOA

8 IR XTK HYB LONF ADR COR AOA

7 IR HDD HYB ALT ADR L ST PR

6 IR LAT HYB VN ADR R ST PR

5 IR LON HYB VE ADR U AV ST

4 IR VGS HYB STAT ADR C AV ST

3 IR TACHD HYB HDOT ADR TOT PRE

2 IR THETA IR VER SPD ADR IMP PRE

1 IR PHI IR P VER S ADR ST TEMP

0 IR VN IR ALT INI ADR COR SLIP

SINUS3

ADR B ALT 1

ADR B ALT 2

GLOBAL INPUTS: ATE, DSTAT

GLOBAL OUTPUTS: SINUSO, SINUS1, SINUS2, SINUS3, STFAIL



217

MODULENAME:
FILE NAME:
PROCESS:

DISFD (Discrete Select and Failure Detect)
DISFD.MAR
FCFAST

PURPOSE: To detect momentary discrepancies and failed sensor or

serial bus errors for the packed discretes.

CALLED BY: FCFAST

CALLING SEQUENCE: CALL DISFD

CALLS TO: None

DESCRIPTION:

Raw discretes arrive from the triplicate sensors, packed in

one word per sensor, via the DATAC bus. The three words are

"debounced" over a period of 5 input cycles to ensure that any bit

change was not a transient. The output is a single packed word

with bits being set with slightly different logic depending on

whether it is a select, a valid, or the duplex radar altimeter

valid, HRV. The output is stored in VDISC for transmission to the

Displays computer. In addition, the VDISC word is unpacked to set

the respective booleans as shown below.

PACKED DISCRETES WORD FORMAT (VDISC)

BIT SIGNIFICANCE

0 HRV

1 ISBV

2 LANDS

3 AUTOS

4 VCWSS

5 ACWSS

6 GSVLD

7 LOCVLD

8 LAMPS

9 IATTV

i0 ADVAL

Ii UNUSED

12 LOCFS

13 INAW

14 UNUSED

15 ASBV

(Duplex)

For selects, the individual debounced bits are compared with

the majority logic vote from the debounce routine. If any select

bit differs from the majority three times within 512 cycles, then

a fail flag for that channel is set in the status word. A second

channel failure causes the second fail flag to be set.

For the valids, if any bit is false 3 times within the 512

pass cycle, then the fail bit is set in the status word for that

channel. A second fail results in the second fail bit being set in

the status word.

Special processing is performed for the glideslope and



218

localizer valid (GSVLD, LOCVLD) discretes if MLS or GPS land
guidance has been selected (specified by the MLS configuration
word, MCONF). If ILS type land capture algorithms under MLS or GPS
guidance is specified (MCONF=xSxx), LOCFS is forced true and both
LOCVLDand GSVLDare set according to the MLS azimuth and elevation
valids, respectively (if MLSMODis true) or according to the GPS
land (GPLNDV) and glideslope (GPBTAV) valids if MLSMODis false.
If GPLND (GPS land selected) is true and MLSMODis false, GSVLD is
set according to GPBTAV regardless of capture mode.

If FLYFLG is true, special processing forces all required
valids true.

DEBOUNCE ALGORITHM

A3 = A2

A2 = A1

A1 = A • MLO

A2 = A2 • A1

AF = (AF • .NOT. A3) + (A • A3)

(Repeat for channels B & C)

MLV = (AF • BF) + (AF • CF) + (BF • CF)

MLO = (MLO • PMLV) + (MLV • PMLV)

WHERE: A = Latest input

A1 = Input N-I

A2 = Input N-2

A3 = Input N-3

AF = Debounced value

MLO = Majority Logic Output

MLV = Majority Logic Voted value

PMLV = mlv from last pass

GLOBAL INPUTS: ASBV, CRESET, CRSET, DISCWI, DISCW2, DISCW3,

ERESET, FLYFLG, GPBTAV, GPLND, GPLNDV, IRSSTI, IRSST2,

ISBV, MCONF, MLSMOD, MLSSV

GLOBAL OUTPUTS: ACWSS, ADVAL, AUTOS, CRSET, DSTAT, ERSET, GSVLD,

HRV, IATTV, INAVV, LAMP, LANDS, LOCFS, LOCVLD, MLO,

VCWSS, VDISC, VORVLD



219

MODULE NAME:

FILE NAME:

PROCESS:

F2CMP (2nd Failure Computations)
F2CMP.FOR

FCFAST

PURPOSE: Checks individual sensor second fails to determine if a

mode failure is required.

CALLED BY: FCFAST

CALLING SEQUENCE: CALL F2CMP

CALLS TO: EXITFI, F2CMP2

DESCRIPTION:

Given the existing flight mode, this routine, together with

its sub-procedures EXITFI, EXITF2 and F2CMP2, determines which

sensors are critical for that mode and checks them for second

failures. If a second failure is found, a failure of that mode is

flagged and the appropriate mode failure message is displayed on

the system test panel. This set of routines also clears all mode

failure flags in the FAIL2 array upon CRSET and clears the error

message tables FSTBL, TEST3, and STFAIL upon ERSET.

F2CMP contains three subroutines:

F2CMP2 - Checks for second failures.

EXITFI - Tests for autothrottle Fail2 and displays

error messages if required.

EXITF2 - Clears all mode failure flags if CRSET is

true, and/or clears all error messages if
ERSET is true.

FAIL2 ARRAY

ARRAY POSITION SIGNIFICANCE

1 AFCS

2 FFD

3 MANEL

4 ACWS

5 VCWS

6 AUTO

7 LAND

8 AUTO THROTTLE

9 MLS

GLOBAL INPUTS: None

GLOBAL OUTPUTS: None



220

MODULENAME:
FILE NAME:
PROCESS:

F2CMP2
F2CMP.FOR
FCFAST

PURPOSE: Checks individual sensor second fails to determine if a
mode failure is required.

CALLED BY: F2CMP
CALLING SEQUENCE:CALL F2CMP2
CALLS TO: EXITF2

DESCRIPTION:
If the simulated airplane is active (FLYFLG is true) or MODEX

is less than 1 (indicating a disengage situation), F2CMP2 merely
sets the CLEARED flag for F2CMP and calls EXITF2. Otherwise it
sets the local MODXvariable equal to MODEX (limited to the range
1 - 7) and proceeds to check failures based on MODX and other
indicators.

If MLSVAL is true, heading, pitch and roll inputs are checked
for validity. If the body mounted accelerometers are not in use
(BMAFLG false), IRS navigation valid (INAVV), attitude valid
(IATTV), along track acceleration, cross track acceleration,
vertical acceleration, ground speed, VN and VE are checked. If any
of the above are failed, FAIL2(MLS) is set, which causes a loss of

MLSVAL.

Next, the SEIU status, the Air Data computer status (ADVAL and

ASBV, the bus status), and (if not MLS mode) the baro altimeter

status are checked. Failure of any of these causes ALTNV (altitude

not valid) to be set and the active mode (FAIL2(MODX)) to be

failed. If the active mode is PRENG, processing concludes at this

point.
Next AFCSV is checked and, if false, the active mode is

failed. If the mode is MANEL, processing concludes here.

Otherwise, processing continues by checking the status of CAS, Q,

P, ROLL, ADVAL, ASBV and IATTV. If MODEX is less than five (VCWS),

PITCH status is also checked. Again, failure of any of the above

will cause mode failure. If the active mode is Forward Flight Deck

(FFDE), processing terminates.
With MODEX >= 4 (ACWS), processing continues by checking the

status of the mode select discretes (ACWSS, VCWSS, AUTOS, LANDS),

and IRS ground speed. Failure of any of these causes mode failure.

If ACWSE is true, processing is complete. Otherwise, vertical

acceleration status is checked. If the mode is VCWS, IRS HDOT

status is checked and, if not MLS mode and NCUVAL is false

(indicating that valid velocity signals from the IRS are

mandatory), cross track acceleration, VN and VE status are checked.

At this point, if VCWSE is false, the mode must be AUTO.

Processing continues by checking for Horizontal path guidance

selected (HORARM) and NCUVAL false. This condition will cause mode

failure. (Track angle select or LAND select might still be

legitimate.) Next, MODX is forced to 7 if LAND has been selected

(LANDR true). Otherwise, return is made to F2CMP.



221

LAND processing continues by checking Radar altimeter valid
(HRV) and, if full MLS has been selected (RLMLS and not SIMILS),
either MLSMODand MLSVAL or GPLND and GPLNDV must be true to
maintain mode. If GPS LAND has been initialized (GPINIT true) then
either GPS glide slope guidance (GPBTAV) or FLARE must be true if
in AUTO mode. (LAND guidance can be maintained in VCWSwith only
valid localizer guidance.)

If Flight Controls is using MLS or GPS guidance (MLSM true)

and either MLSMOD or GPLND is true, processing is complete.

Otherwise, processing continues by checking PITCH, INAVV, THDG, VN

and VE status. (Note that the above signals were already checked

to maintain MLS valid. GPS valid may need to be investigated

further.) If FLARE is false, glideslope, localizer and localizer

frequency select statuses are checked. (Once FLARE is engaged, we

are committed to touch down.) This completes F2CMP2 processing.

GLOBAL INPUTS: ACWSE, AFCSV, AUTOE, BMAFLG, DSTAT, FFDE, FLARE,

FLYFLG, GPINIT, GPBTAV, GPLND, GPLNDV, HORARM, LANDR,

MANEL, MLSM, MLSMOD, MLSVAL, MODEX, NCUVAL, PRENG, RLMLS,

SIMILS, STFAIL, VCWSE

GLOBAL OUTPUTS: FAIL2



222

MODULE NAME :

F ILE NAME :

PROCESS :

EXITFI

F2CMP.FOR

FCFAST

PURPOSE: Performs auto throttle mode failure checks and outputs
mode failure (demand) messages if indicated.

CALLED BY: F2CMP

CALLING SEQUENCE: CALL EXITFI

CALLS TO: EXITF2, FMTMG

DESCRIPTION:

EXITFI begins by clearing the CALLD flag. This flag is used
to ensure that only one mode failure message is output on a given

entry. Next, if the autothrottle is engaged (ATE is true), the

status of TAS, CAS, TAT, ADVAL, ASBV and the ALTNV flag (set by
F2CMP2) is checked, and the failure of any signal used to fail the

autothrottle mode. If NCUVAL is false, IRS nay valid (INAVV) and

the status of the IRS along track acceleration signal is also

checked.

Next, FRCNT is checked to see if a message has been output

within the last 20 iterations. If FRCNT is non-zero, it is

decremented, EXITF2 is called and a return is made to F2CMP.

Otherwise, the FAIL2 array is scanned for any failure logged with

the corresponding entry in the DSPLF array false (indicating that

this failure has yet to be displayed). If none are found, exit is
made as above. Otherwise, the mode fail and status alert bits are

set in the LIGHTS word, DSPLF is set, FRCNT is set to 20 and FMTMG

is called to display the failure message and transmit the LIGHTS
code. EXITF2 is then called and processing ends.

GLOBAL INPUTS: ATE, DSPLF, DSTAT, FAIL2, NCUVAL, STFAIL

GLOBAL OUTPUTS: DSPLF, FAIL2, FSIDX, LIGHTS



223

MODULE NAME:

FILE NAME:

PROCESS:

EXITF2

F2CMP.FOR

FCFAST

PURPOSE: Clear the appropriate error tables when CRSET or ERSET is

set.

CALLED BY: EXITFI, F2CMP2

CALLING SEQUENCE: CALL EXITF2

CALLS TO: None

DESCRIPTION:

If CRSET or FLYFLG is true, the FAIL2 array is cleared. The

clear on FLYFLG is to positively block mode failures when the

simulated airplane is active. If ERSET is true, the STFAIL array

and the signal failure counters in FAILBLK are cleared, and the

failure read and status alert lamp bits in the LIGHTS word are

cleared.

GLOBAL INPUTS: CRSET, ERSET, FLYFLG

GLOBAL OUTPUTS: FAIL2, LIGHTS, STFAIL



224

MODULE NAME:

FILE NAME:

PROCESS:

FDSTR (Failure Data Storage)

FDSTR.FOR

FCFAST

PURPOSE: Examines sensor status to detect failure and records

failure information in a table of failure data.

CALLED BY: FCFAST

CALLING SEQUENCE: CALL FDSTR

CALLS TO: DSTOR, TEST SENSORS

DESCRIPTION:

This routine has four major parts. The first section examines

aircraft state and the System Test Panel switch word (FALST) to

determine whether flight or preflight tests are being performed,

and sets the STORE pointer to the appropriate failure table. The

second part checks the digital ADIRS and GPIRS sensors. Inertial

and/or air data sensors may be checked depending on the state of

the validity flags, INAVV, IATTV and ADVAL. These checks are

performed by the sub-procedure TEST SENSORS. The third part tests

the discrete signals. Lastly five separate tests are run on the

Sensor-Effector Interface Unit (SEIU), Research Flight Deck

Interface Unit (RFDIU) System and a test on the DATAC link between

the FM/FC and DS/DF VAX computers.

All sensors are checked for their failure status using a

similar procedure. Each sensor is scanned initially for second

failures and then for first fails. For the present system,

virtually all sensor inputs are simplex, therefore first and second

failures are synonymous. The exceptions are the radar altimeter

(duplex) and certain Control Mode Panel switches (triplex). If a

failure is indicated and has not already been recorded, the needed

failure data is formatted into 8 1/2 words and stored in a failure

data table by procedure DSTOR for later retrieval by FMTMG when a

failure message display is requested.

A series of tests is performed on the SEIU/RFDIU system. The

first test checks communication between the VAX and the SEIU.

Second is a check for power failure on the SEIU. Third, a test is

run on the six SEIU and two RFDIU analog to digital converters.

Fourth is a test of VAX to RFDIU communication. Fifth, a test for

RFDIU power fail is made. Finally, a test of the DATAC link from

the DS/DF to the FM/FC VAX is made.

STFAIL Format:

Array Position Signal Array Position Signal

1 Q 34 TAS

2 P 35 HDOT

3 R 36 CAS

4 AX 37 MACH

5 AY 38 TAT

6 AN 39 IND AOA

7 ATKINS 40 COR AOA



8 XTKINS 41 L ST PR

9 HDDINS 42 R ST PR

I0 LATINS 43 U AV ST

ii LONINS 44 C AV ST

12 GSINS 45 TOT PRE

13 THDG 46 IMP PRE

14 PITCH 47 ST TEMP

15 ROLL 48 COR SLIP

16 VNINS 49 B ALT 1

17 VEINS 50 B ALT 2

18 IRSWS 51 HRV

19 IRSWD 52 ISBV

20 HYBLAT 53 AUTOS

21 HYBLON 54 VCWSS

22 MAGHDG (ADIRS) 55 ACWSS

23 HYBLAT FIN 56 GSVLD

24 HYBLON FIN 57 LOCVLD

25 HYBALT 58 LAMPS

26 HYBVN 59 IATTV

27 HYBVE 60 ADVAL

28 GRSST 61 LOCFS

29 HYBHDT 62 INAVV

30 IRSHDOT (ADIRS) 63 ASBV

31 P VER S (N/U) 64 ISBV

32 IRSALT 65 TSBV

33 HBARO 66-68 N/U

225

This routine shares common local data with DSTOR, PANEL,

FMTMG, and F2CMP.

GLOBAL INPUTS: ADVAL, CRSET, DSTAT, DTC_IN, FALST, IATTV, INAVV,

INSST, MSWIT, PRENG, SQUAT, STFAIL, WSPIN

GLOBAL OUTPUTS: DSTAT, FIDENT, LIGHTS, MSWIT, PMSWIT, STFAIL



226

MODULE NAME:

FILE NAME:

PROCESS:

TEST SENSORS

FDSTR.FOR

FCFAST

PURPOSE: Performs error checks on ADIRS and GPIRS input data.

CALLED BY: FDSTR

CALLING SEQUENCE: CALL TEST SENSORS

CALLS TO: DSTOR

DESCRIPTION:

Each sensor within the range indicated by NDX and COUNTER (set

by FDSTR) is initially checked to see if it is in use (indicated by

the sign bit of STFAIL) and if a parity error has already been

stored. If either of the above is false, the pointer NDX is

incremented and the next sensor is checked. Otherwise, the parity

and validity of the sensor is checked. If a failure is detected,

a counter is incremented, otherwise it is cleared. A separate

count of parity and validity errors is maintained, each occupying
one byte of the STFAIL entry pointed to by NDX. If either counter

reaches three, the failure read bit in LIGHTS is set, DSTOR is

called to log the error and the _failure stored' bit (0080x for

parity, 4000x for validity) is set.

GLOBAL INPUTS: DTC_IN, DTC_OUT, LIGHTS, STFAIL

GLOBAL OUTPUTS: LIGHTS, STFAIL



227

MODULE NAME:

FILE NAME:

PROCESS:

FMTMG (Format Message)
FMTMG.FOR

FCFAST

PURPOSE: Formats failure messages from the form stored in the
failure data tables into an ASCII form which can be

output to the system test panel by GMSG.

CALLED BY: CTLCK, DETNT (MLOG), ILSRC, PANEL, PRFLT

CALLING SEQUENCE: CALL FMTMG (PI, P2)

Where: P1 = address of the message to be formatted.

P2 = the index into the failure data table (FDSTR)

which contains data to be added to the basic

message. P2 is required only if the message is of

the type requiring additional data.

CALLS TO: ICO

DESCRIPTION:

Five different types of messages are formatted by FMTMG. The

first byte of the message to be formatted contains a control

character that denotes its type. The four control characters and

their meanings are:

<space> - Demand message. Format only the message text.
This type of failure is not stored in the

failure data tables. Contains up to 32
characters of text.

< 1 > - Analog sensor failure. Format time of

failure, nine characters of message text,

channel failed, flight mode when failure

occurred, analog failed value, and analog
voted value.

< 2 > - Discrete sensor failure. Format time of

failure, seventeen characters of message
text, channel failed, flight mode when failure

occurred, discrete failed value, and discrete
voted value.

< 3 > - General purpose failure. Format time of

failure, seventeen characters of message text,

failed channel and flight mode when failure
occurred.

< 4 > - Digital sensor failure (ADIRS/GPIRS). Format
time of failure, seventeen characters of

message text and either "PAR" or "VLD"

depending on whether a parity or validity



228

error occurred.

This routine uses a local subroutine called ICO to convert

binary values into decimal ASCII. It shares common local data with
FDSTR, DSTOR, PANEL, and F2CMP.

GLOBAL INPUTS: LIGHTS, MSWIT

GLOBAL OUTPUTS: MSBUF, MSGST, WRDCNT



229

MODULE NAME:

FILE NAME:

PROCESS:

ICO

FMTMG.FOR

FCFAST

PURPOSE: Convert input integer data (I'2) to 5 ASCII digits.

CALLED BY: FDSTR

CALLING SEQUENCE: CALL ICO(NUMBER, INDX)

Where: NUMBER is the number of digits to be converted.

INDX is the pointer to the first digit in MSBUF.

CALLS TO: None

DESCRIPTION:

This subroutine converts the failed and selected values to

their ASCII representation. Since the number can be up to 5

digits, the routine puts the sign in MSBBYT, then starts inserting

the converted number from the rear. E.g, the first time through

the index is 23. The sign is put in MSBBYT(23). Then, the index is

incremented to 28 and a digit is converted and stored. The index

is decremented and the process is repeated 4 times.

GLOBAL INPUTS: None

GLOBAL OUTPUTS: MSBUF, MSBBYT

Whe re : MSBBYT is the byte equivalent of MSBUF, the output

message buffer.



230

MODULENAME:
FILE NAME:
PROCESS:

DSTOR (Data Storage for STP)
DSTOR.FOR
FCFAST

PURPOSE: Stores data for error messages into the failure data
table (FDTBL).

CALLED BY: FDSTR, PREFLT(ILSRC, SRVCK)
CALLING SEQUENCE: CALL DSTOR(PI, P2, P3, P4)

Where: P1 - Address of the failure message
P2 - Channel (for formats 2 and 3)
P3 - Failed value
P4 - Voted value

CALLS TO: None

DESCRIPTION:
DSTORpacks 17 of 19 bytes of information needed to create an

error message into a data area for retrieval later by FMTMG. The

bytes are stored in records which are defined as:

Field 1 Failure ID (address of failure message in MESG) 4 bytes

Field 2 Sensor channel failed / mode at fail time (MODEX) 2 bytes

Field 3 Hour of failure 1 byte

Field 4 Minute of failure 1 byte

Field 5 Second of failure 1 byte

Field 6 Failed data value 2 bytes

Field 7 Voted data value 2 bytes

Field 8 Reset ** 2 bytes

** The information for field 1 is stored by FDSTR when the reset

button is pressed.

This routine shares common local data with FDSTR, PANEL, FMTMG, and
F2CMP.

GLOBAL INPUTS: HRSS, MINS, MODE2, MSWIT

GLOBAL OUTPUTS: FDTBL



MODULENAME:
FILE NAME:

PROCESS :

PANEL (System Test Panel Interface)
PANEL.FOR

FCFAST

231

PURPOSE: Service the System Test Panel requests.

CALLED BY: FCFAST

CALLING SEQUENCE: CALL PANEL

CALLS TO: FMTMG

DESCRIPTION:

PANEL sets bits in _SWITCH' according to the hardware status

word (FALST) from the System Test Panel to determine which button

was depressed on the panel. The bits are defined as:

Bi__.!t Button pushed

15 Panel Test

Descriptio D

Produces a momentary illumination of all

lights and display segments for test

purposes.

14 Panel Reset Results in a hardware reset of the System

Test Panel. If this button is depressed,
PANEL is exited with with no further

button checks.

13 Mode Fail

12 Status Alert

Turns off the Mode Fail lamp.

Displays Status Alert (mode-failure)

messages on the System Test Panel.

10 Data Clear Clears Failure Data table (FDSTR) and

blanks the display.

8 Failure Read Displays recorded sensor failure messages

on the System Test Panel.

This routine shares common local data (FAILBLK) with FDSTR,

DSTOR, FMTMG, and F2CMP.

GLOBAL INPUTS: FALST, FSIDX, LIGHTS, MSWIT, SWITCH, WRDCNT

GLOBAL OUTPUTS: LIGHTS, MSBUF, MSGST, SWITCH, WKDCNT



232

Section 6.2 DATA RECORDING

There are five data recording modules which provide the

capability to record selected data on magnetic tape, paper, and

strip charts. The file DSTDAT.MAR, linked with the process DSTAR,
contains a default list of data items to be recorded through the

Data Acquisition System (DAS). It also contains a group of

alternate tables which provide lists of variables to be plotted on

the strip charts. DSTAR is an interactive program which permits

the experimenter to modify the data recording tables and to set up

_snap' tables for printing selected variables on the experimental
systems line printer. DSTAR processes the recording list
information and stores addresses and scale factors for the DAS.

The module SNAP works with tables generated through DSTAR. When a

user specified condition is encountered, SNAP saves the associated

set of data items. Subsequently, the background module SNAPOUT

prints the data values to the line printer.
The subroutine DASOT takes the data specified in the DAS

lists, formats it, and stores it in the 150 words of DAS output

memory. The strip chart data are also included in the DASOT

output, which is routed to the onboard strip charts by the DAS.

The output from SNAP and the strip charts is available in

flight. The data stored on the DAS tape is available for a "quick
look" soon after the experimental flight is completed. DAS

information is available over the long term for more thorough data

reduction and analysis.



233

MODULE NAME :

FILE NAME:

PROCESS :

DASOT (DAS Recording Output)

DASOT.MAR

FCFAST

PURPOSE: To configure the alternate-tables to control the strip

chart recorders, and to reformat certain data for

recording.

CALLED BY: FCFAST

CALLING SEQUENCE: CALL DASOT

CALLS TO: None

DESCRIPTION:

DASOT first checks the boolean NODAS to see if the recording

tables are being modified by DSTAR. If NODAS is true, no further

processing is performed. Otherwise, the globals RECWD, RECWDI,

RECWD2, and RSWADR are checked to determine which set of alternate

tables should be stored in the global DASPAR parameter list for

strip chart recordings. If RSWADR is clear or if there is a

boolean false at the address contained in RSWADR, then the "normal"

table set specified in RECWDI is used. Otherwise, RECWD2 is used.

RECWD contains the current configuration. If it does not match the

selected pattern, then a new set of alternate tables is loaded

into DASPAR. This will happen when the alternate tables have been

changed through DSTAR and bit 15 of RECWD is set. The values in

RECWDI, RECWD2, and RSWADR are user specified through task VIEW as

follows:

RSWADR: USAGE

CLEAR =

ADDRESS =

The primary set of alternate tables (RECWDI)

will be written to the DASLST strip chart

blocks.

The address of some discrete (e.g, MLSVAL) which

will, when true, cause the secondary set of

alternate tables (RECWD2) to be used. (NOTE:

the VIEW and FCFAST processes must be

identically linked for this to work.)

RECWDI/RECWD2: BIT MAP

BITS 3,2,1,0:

BITS 7, 6, 5,4:

BITS 9,8:

Value 0-7,

Value 8-15

Value 0-7,

Value 8-15

Value 0-3,

Value 4-15

Use Alt Tables 0-7 for Strip

Blk i.

Reserved for future expansion.

Use Alt Tables 0-7 for Strip

Blk 2.

Reserved for future expansion.

Use Alt Tables 8-11 for Strip

Blk 3.

Reserved for future expansion.

For a normal configuration of tables 0, i, and 8, RECWDI would



234

be set to 0010 hexadecimal. For a secondary configuration of

tables 4, 5, and 9, RECWD2 would be set to 0154 hexadecimal.
The most recent table configuration is recorded in RECWD. If

this does not match the selected pattern, then the table addresses

need to be changed. Otherwise, control passes to the data

processing code at label CONT.
The alternate-table setup is done at label DOIT. As

appropriate, RECWD1 or RECWD2 is moved into RECWD as the new
configuration record. ALTPAR is the source of the new tables. It

was loaded by DSTAR from DSTDAT and/or from user input. ALTPAR

consists of 12 tables with 8 entries per table, 2 long-words per

entry. The format and its significance are:

LWORDI: Bits 31-25
t!

Unused

24 Set denotes an 8 bit variable.

23:16 shift count (+ = Left), used

to position integer data for

recording.

15 Set denotes NOT floating point
data

14:0 Scale factor for the data.

NOTE: For a floating point variable, the

entire longword is a scale factor.

LWORD2: Address of the data.

The three required tables are identified and transferred to

the first 24 entries (8 x 3) in DASPAR, the primary DAS recording
list which includes both the alternate tables and the rest of the

data list for recording. On a run where a table change has

occurred, DASOT terminates at this point.

On a nominal run, when the tables are static, DASOT builds the

packed discrete DISOUT and also calculates and stores the current

navigation position errors. The booleans to be packed into DISOUT '

are listed locally at label DISLST. The sign bit of each boolean

is shifted left into a register which finally is shifted to place

the bits at 0:9, and moved into DISOUT. Next, the position errors

are computed as follows:

MLS-VALID:

LATDIF = IDDLAT - MLSLAT

LONDIF = IDDLON - MLSLON

ALTDIF = IDDALT - MLSALT

ELSE:

LATDIF = IDDLAT - LATINS

LONDIF = IDDLON - LONINS

ALTDIF = IDDALT - IRSALT.

Next, IDDLAT and IDDLON are converted to 32 bit integer data

and output as IDDLTF and IDDLNF. Finally, XHAT and YHAT are scaled

(x 4) and stored off as the longwords XHTFIN and YHTFIN.



235

GLOBAL INPUTS : ALTPAR, IDDALT, IDDLAT, IDDLON, IRSALT, LATINS,

LONINS, MLSALT, MLSLAT, MLSLON, RECWD, RECWDI, RECWD2,
RSWADR, XHAT, YHAT

GLOBAL OUTPUTS: ALTDIF, DASPAR, DISOUT, IDDLTF, IDDLNF, LATDIF,
LONDIF, RECWD, XHTFIN, YHTFIN



236

MODULE NAME:

FILE NAME:

PROCESS:

SNAP (Snap Data Storage)

SNAP.FOR

FCFAST

PURPOSE: To record snapshot values of user specified variables

according to user defined criteria.

CALLED BY: FCFAST

CALLING SEQUENCE: CALL SNAP

CALLS TO: DUMPS, GET_BYTE, GET_REAL, GET_WORD

DESCRIPTION:

The DSNAP routine records single-event values, called

snapshots, for selected variables and stores them in SNAPBUF, in

RECCOM, for subsequent output to the line printer by the SNAPOUT

routine. There are 5 snapshot criteria tables (SCRIT), each a

structured record which contains a key variable address, the

criteria under which that variable should cause a snapshot

recording, and a list of up to 15 addresses for the data to be

sampled when the snapshot occurs. (See the SCRIT table

documentation in the RECCOM listing.) These tables are set up by

the user through the DSTAR process. DSNAP checks as many snap

tables as have been defined in DSTAR (indicated by SNENT). First,

the type of the key variable is determined from the STYPE sub-field

in the SCRIT tables. Depending on whether the key is an integer,

real or single-byte, the current value is picked up through a call

to GET_WORD, GET_REAL, or GET_BYTE, respectively. All three types

are processed similarly. The specified criteria may be that the

current value be less than, equal to, or greater than the

threshold. If equality is specified, then a _window' will also

have been specified and some approximation of equality will be

acceptable. If the specified condition is met and a snap has not

already been done for this condition, then subroutine DUMP is

called and the _SNAP Done' bit is set in the type word. If a snap

has been done for the specified condition, then, if that condition

is no longer true, the _done' bit is cleared and that snap

re-enabled. Thus, only one report is generated each time the

condition is satisfied. That single-byte key variables may be

booleans or single-byte integers is irrelevant; both possibilities

are checked as if they were integers. A FALSE condition is

recognized by a value of exactly zero, TRUE is the least

significant bit set. This could also be true for a single-byte

integer but the difference is significant only for subroutine

SNAPOUT to determine the labelling when the snap is printed.

GLOBAL INPUTS: NOSNAP, SCRIT, SNENT, SPTR, SRST

GLOBAL OUTPUTS: RPTR, SCRIT, SPTR, SRST



237

MODULENAME:
FILE NAME:
PROCESS:

DUMPS
SNAP.FOR
FCFAST

PURPOSE: To load the snapshot data specified by the SCRIT table

entry _index' into the SNAPBUF table for subsequent

output by the SLOW loop procedure SNAPOUT.

CALLED BY: SNAP

CALLING SEQUENCE: CALL DUMPS(index)

CALLS TO: GET_BYTE, GET_REAL, GET_WORD

DESCRIPTION:

Subroutine DUMP first increments SPTR (modulo-4) to tell

SNAPOUT that a new snap has been recorded, then it stores the

number of the snap in the 16th entry of SNAPBUF(n).SDATA. Next,

for as long as there is an address (up to 15) in SCRIT(n).SLADR,

the address list, it determines the type and byte count of each

variable in the list, collects the value at the address through

calls to GET_WORD, GET REAL, or GET BYTE, as appropriate, and

finally stores them as _ntegers or re-al numbers in the first 15

entries of SNAPBUF(n).SDATA (or .SDATR). A flag is set to indicate

whether the variable is an integer or a real number, or else that

there was an error or the end of the list.

GLOBAL INPUTS: SCRIT, SPTR

GLOBAL OUTPUTS: SPTR, SNAPBUF



238

6.3 PREFLIGHT OVERVIEW

The Preflight software performs an automatic operational test

of various flight control systems. Upon initiating this procedure

several tests are made on the system in parallel. These include

stimulating and checking sensors and servos, checking sensor

valids, and testing pilot control inputs. After concluding,

preflight will list all failures found on the system test panel.

Subroutine PRFLT contains the control logic for the

automated preflight tests. There are seven routines associated

with pre-flight, all of which are called from FCFAST when MSWIT

(set in FDSTR) = i. Note that when pre-flight is active the calls

to MLSEX, LATRL, ELEVP, DINUSE and SINUSE are bypassed, and MLOG

processing is minimal. The other routines and their functions are

as follows.

CTLCK

CLBIS

RDALT

ILSRC

RGYRO

SRVCK

- checks the AFD wheel column, rudder pedal and trim

inputs.

- sets values in AILCMD, RUDCMD and DECMD.

- tests the radar altimeters.

- tests the ILS localizer and glideslope receivers.

- tests the rate gyros (yaw, pitch, roll).

- tests the aileron, spoiler panel, rudder, elevator

and stabilizer position inputs.

Procedure FDSTR is active during pre-flight and logs errors

resulting from sensor disagreement. Errors of magnitude are logged

by the preflight routines directly.



239

MODULE NAME:

FILE NAME:

PROCESS:

PRFLT (Pre-flight Test Executive)

PRFLT.MAR

FCFAST

PURPOSE: To initiate and control the system preflight tests.

CALLED BY: FCFAST

CALLING SEQUENCE: CALL PRFLT

CALLS TO: CLBIS, CTLCK, FMTMG, ILSRC, RDALT, RGYRO, SRVCK

DESCRIPTION:

The preflight system is composed of six subroutines that are

called serially from PRFLT (if in preflight mode) in the following
order:

JSB CTLCK

JSB CLBIS

JSB RDALT

JSB ILSRC

JSB RGYRO

JSB SRVCK

; Control check test.

; Control bias procedure.

; Radio altimeter test.

; ILS self test.

; Rate gyro test.

; Servo displacement test.

Each of the test modules performs a certain system check by

stimulating individual sensors and then checking for the proper

response. The tests and procedures are controlled by a packed test

inhibit word called INHIBT. Each routine has its own bit which, if

set, suspends that test from running. There is also a master

inhibit bit which, if set, inhibits all preflight tests from

running.

The bits in the INHIBT word are packed as follows:

BI__.T.T USAGE
0 PRFLT

1 CLBIS

2 RDALT

3 ILSRC

4 RGYRO

5 CTLCK

6 SRVCK

7-14 N/U

15 MASTER INHIBIT

The module PRFLT is called once the system test panel mode switch

is moved from flight to preflight and the routine FDSTR has

acknowledged that the preflight mode is possible (by checking for

the presence of SQUAT and not WSPIN). The module PRFLT on its

first pass performs initialization of preflight variables and flags

including setting the master inhibit bit to prevent the remainder

of the modules from running. PRFLT itself is immune to the master

inhibit bit. PRFLT then checks whether the Aft Flight Deck (AFD)

is engaged. If not, a message is displayed to prompt the operator

to engage the AFD paddle. Once engaged, a message is displayed to



240

prompt the user to push the start test button. PRFLT then waits
for this response, then clears the INHIBT word so that all tests

begin running. After all the tests are completed (each test sets
its own INHIBT bit when finished) PRFLT tests if any failures were

detected. If so a message is displayed to alert the operator.
This routine shares common local data with all other preflight

modules.

GLOBAL INPUTS: AEE, AFCSV, FAIL2, LIGHTS, MESG

messages), MSWIT, PMSWIT, SWITCH, WRDCNT

(pool of

GLOBAL OUTPUTS: AEE, FLAGS, LIGHTS, MODEX, MODE2, MSGST, MSBUF,

STRUA, STRUB, STRUC, SWITCH, WRDCNT



241

MODULENAME:
FILE NAME:
PROCESS:

CLBIS (Control Surface Bias Outputs)
PRFLT.MAR
FCFAST

PURPOSE: This preflight procedure sets the airplane control
surfaces for testing by SRVCK.

CALLED BY: PRFLT
CALLING SEQUENCE:JSB CLBIS
CALLS TO: None

DESCRIPTION:
CLBIS is one of seven preflight modules that are all

associated. For an overview of the whole preflight system see the
description of PRFLT. If its INHIBT bit is set this program is
exited. If not, CLBIS will either reset the control surfaces

(aileron, rudder, and elevator) or setthem to test values. This

is determined by the flag RST (local variable to the preflight

routines) which is controlled by the SRVCK test. The test values

which the control surfaces are set to are the following:

AILERON : 5 deg left wing down

RUDDER : I0 deg left yaw

ELEVATOR : 13.84 deg fly up

This routine shares common local data with all other preflight

modules.

GLOBAL INPUTS: None

GLOBAL OUTPUTS: AILCMD, DECMD, RUDCMD



242

MODULE NAME:

FILE NAME:

PROCESS:

CTLCK (Controls Check)
PRFLT.MAR

FCFAST

PURPOSE: This preflight test checks the various controls for

proper displacement by the operator.

CALLED BY: PRFLT

CALLING SEQUENCE: JSB CTLCK
CALLS TO: FMTMG

DESCRIPTION:

CTLCK is one of seven preflight modules that are all

associated. For an overview of the whole preflight system see the
description of PRFLT. If this test's inhibit bit is cleared the

following prompts will be issued one at a time on the system test
panel, waiting each time for the requested stimulus.

TURN RUDR TRM RT-LT

PUSH RUDR PEDALS RT-LT

TURN AILRN TRM RT-LT

ROLL PMC RWD-LWD

PUSH-PULL PMC ND-NU

RE-CTR AILRN TRM

(Turn rudder trim knob right and left.
Input must exceed 7.4 PU.)

(Push rudder pedals right and left.

Input must exceed 2.64 deg.)

(Turn aileron trim knob right and left.

Input must exceed 5.05 PU.)

(Turn wheel right and left. Input

must exceed 27.7 deg.)

(Push-pull column. Input
must exceed 1.7 in.)

(Re-center aileron trim: < 1.01 PU.)

RE-CTR RUDR TRM (Re-center rudder trim: < 0.83 PU.)

This program contains two local subroutines called DISP and

NULL. DISP performs the first five displacement tests above. NULL

performs the remaining two re-centering tests.

This routine shares common local data with all other preflight
modules.

GLOBAL INPUTS: ATRIM, PEDAL, DCOL, DCOL,

messages), PEDAL, RTRIM, WRDCNT
MESG (pool of

GLOBAL OUTPUTS: FLAGS



243

MODULE NAME:

FILE NAME:

PROCESS:

ILSRC (ILS Receiver Checks)
PRFLT.MAR

FCFAST

PURPOSE: To test the ILS receivers during preflight testing.

CALLED BY: PRFLT

CALLING SEQUENCE: ILSRC

CALLS TO: FMTMG, DSTOR

DESCRIPTION:

ILSRC is one of seven preflight modules that are all

associated. For an overview of the whole preflight system see the

description of PRFLT. If this test's INHIBT bit is clear, this

module first checks for the presence of LOCalizer Frequency

Selected (LOCFS). If not present, a message is displayed to alert

the operator and the test is aborted. Otherwise, the signal valids
for the localizer and glide-slope are checked. Provided these are

found to be true, the localizer and glide-slope receivers are both

tested for the proper response to the stimulus provided by PRFLT

immediately after pushing the start-test button (LOC between 0.8911

and 1.074 deg and GS between 0.3274 and 0.4126 deg). If the

response is not within expected limits an error is flagged.

This routine shares common local data with all other preflight
modules.

GLOBAL INPUTS: GSDEV, GSVLD, LOCDEV, LOCFS, LOCVLD, MESG (pool

of messages)

GLOBAL OUTPUTS: FIDENT, FLAGS, STRUA, STRUB, STRUC



244

MODULE NAME:

F ILE NAME :

PROCESS :

EDALT (Radar Altimeter Checks)

PRFLT.MAR

FCFAST

PURPOSE: To test the radio altimeters during preflight.

CALLED BY: PRFLT

CALLING SEQUENCE: JSB RDALT

CALLS TO: None

DESCRIPTION:

RDALT is one of seven preflight modules that are all

associated. For an overview of the whole preflight system see the

description of PRFLT. If this test's INHIBT bit is not set this

test checks both radio altimeters for proper response to an

artificial 100 foot stimulus (failing if not between 95 and 105

feet) and ground level (failing if greater than 2 feet).

This routine shares common local data with all other preflight

modules.

GLOBAL INPUTS: DTC IN

GLOBAL OUTPUTS: DSTAT, DTC OUT, STRUA, STRUB



245

MODULE NAME:

FILE NAME:

PROCESS:

RGYRO (Rate Gyro Checks)
PRFLT.MAR

FCFAST

PURPOSE: To test the pitch, roll, and yaw rate gyros during

preflight testing.

CALLED BY: PRFLT

CALLING SEQUENCE: JSB RGYRO

CALLS TO: None

DESCRIPTION:

RGYRO is one of seven preflight modules that are all

associated. For an overview of the whole preflight system see the

description of PRFLT. If this test's INHIBT bit is set, the

program is exited. If not, each of the three rate gyros are

checked against values that are expected (between 0.85 and 1.43

deg/sec) as a result of stimuli supplied by PRFLT immediately after

pushing the start-test button. This is done by the local

subroutine RGTST. After stimulation, the gyros are checked for

null values (below 0.7 deg/sec). This is performed by the local

subroutine NORM. Any errors are recorded for display by the system

test panel.

This routine shares common local data with all other preflight
modules.

GLOBAL INPUTS: P, Q, R

GLOBAL OUTPUTS: DTC_OUT, STRUA, STRUB, STRUC



246

MODULE NAME:

FILE NAME:

PROCESS:

SRVCK (Servo Checks)

PRFLT.MAR

FCFAST

PURPOSE: Tests the aileron, elevator, and rudder servos during

preflight testing.

CALLED BY: PRFLT

CALLING SEQUENCE: JSB SRVCK

CALLS TO: DSTOR

DESCRIPTION:

SRVCK is one of seven preflight modules that are all

associated. For an overview of the whole preflight system see the

description of PRFLT. If this test's INHIBT bit is not set, one of

three possible paths is chosen. If it has been less than three

seconds since the start-test button was pushed the test is exited.

At exactly three seconds the boolean RST is cleared and the INHIBT

bit for CLBIS is toggled so that it may clear AILCMD, RUDCMD, and

DECMD, which had previously been set to static test values at

start-test time. After three seconds from start-test, four local

subroutines are called serially to test the servos. These four
tests are listed below.

i.) LATAX - Tests aileron position and rate of change of

spoiler position. Commands 5 deg aileron and fails if

response after three seconds is not between 4.0 and 5.5
deg, or if spoiler change is not between 3.0 and 12.0

deg.

2.) ELEVT - Tests elevator position. Commands 5 deg elevator

and fails if response after three seconds is not between

4.5 and 5.5 deg.

3.) HZSTB - Tests the stabilizer trim. Sets trim true and

checks change in stabilizer after twenty seconds.

Failure is indicated if change is not between 0.5 and 0.7

deg for flaps < 2 deg, or 2.9 and 4.3 deg for flaps >= 2

deg.

4.) AFRUD - Tests rudder position. Commands 5 deg rudder and
fails if response is not between 4.0 and 6.0 deg after

three seconds.

If any discrepancies are noticed between actual and expected

values, an error is recorded for later display on the System Test
Panel.

This routine shares common local data with all other preflight

modules.



247

GLOBAL INPUTS: ALVDT, DEPOS, DRPOS, FLAP, MESG (pool of
messages), SPR7, STABP

GLOBAL OUTPUTS:

TRIMT AILCMD, DECMD, FIDENT, LIGHTS, RUDCMD, TRIMD,



248

7.0 DAS/SNAP TABLE ACCESS

MODULE NAME:

FILE NAME:

PROCESS:

DSTAR (DAS/Snap Table Access Routine)
DSTAR.FOR

DSTAR

PURPOSE: A utility to transfer recording parameters for the Data

Acquisition System (DAS), to accept interactive
modifications to the existing parameters, and to create

parameter tables for the SNAP routine.

CALLED BY:

CALLING SEQUENCE:

A: HDL (on cold start)

B: The User (manually)

A. VAXHDL:

DS PROC NAME: .ASCID /DSTAR/

CREPRC S IMAGE=DS PROC NAME,-

INPUT=TERM_DESC,-

OUTPUT=TERM_DES,-
BASPRI=#20,-
PRCNAM=DS PROC NAME

; DSTAR IMAGE NAME

; USE CREATING PROCESS'S
; I/O DEVICE

; PRIORITY 20 (RUNS NOW)
; SUBPROCESS NAME

B. Manually: RUN DSTAR

CALLS TO: DASDUMP, DASPRC, FOR$CLOSE, FOR$DATE T DS,

FOR$OPEN, MAPCOM, SNAPDUMP, SNPRC

DESCRIPTION:

The primary function of DSTAR is to load the tables (DASPAR &

ALTPAR) used by DASOT to select and route data to the Data

Acquisition System (DAS) for recording on tape or on the aircraft

strip charts. This is done automatically and transparently on

system startup (cold start) when DSTAR is called by the I/O handler

(HDL). In this case, DAS processing is enabled for whatever data

is defined in the default DAS list, nominally DSTDAT. This is an

external file included in the DSTAR process which is documented

separately in this volume. (DSTAR defines DSTDAT as a common block

containing structured records which correspond in format and

quantity to the entries in DDATA and ATABL, the 2 global data
blocks in DSTDAT.)

The secondary function of DSTAR is to run interactively and

accept user input to modify the DAS list, or to create or modify

the snap tables. Snap tables (SCRIT) do not pre-exist and can only

be created through DSTAR. DSTAR also provides a mechanism for

saving/returning snap tables, DAS changes, and alternate table

changes to/from disk storage.

The interactive routine is menu driven and generally self

explanatory. However, more detailed instructions will be displayed

at various points if the user selects tutorials in response to the

initial question and prompt: "Do you want tutorials? Y/N."



249

There are up to 150 entries in the DDATA section of the DAS

list, each consisting of a name, address, and scale factor.

Entries may be changed, and/or new ones added up to the limit.

Entries I through 24 are used for the strip chart parameters and
are organized in three blocks of eight entries each. Each of these

blocks corresponds with 1 of the 12 alternate tables which may be
read into this area by subroutine DASOT. These alternate tables

are maintained in the lower section of DSTDAT, in the global data
block ATABL. Tables zero through seven relate to blocks one or

two. In either mode of operation, the contents of DDATA and ATABL

are written to the global DASPAR and ALTPAR tables, respectively,
during the DAS dump routine.

When modifying the DAS list, the user will be required to

enter scale factors for each data item entered or changed. These

are explained in the DSTDAT documentation in _his volume.

Up to eight snap tables may be created. . The user should be

prepared to enter the name of the variable to be used as the key

for the snap, the value at which the snap should occur, the range

or "window" if an exact match is not required, and the names of up

to 15 variables to be "snapped" to the printer when the snap

occurs. When the name of a variable is requested, DSTAR will

recognize the name of any global variable in any global section in
the system. Local variables or local common blocks cannot be

referenced. Array elements can be specified with the index in

parentheses. A series of array elements can be inserted as one

entry by appending an asterisk and count to the index. For

example, XYZ(3*15) will pick up element 3, plus the next 14, for a
total of 15.

The use of the "bare" carriage return is consistent throughout

DSTAR. It will terminate the current activity, such as a series of

data entries, and re-display the previous menu. From any point in

the program, three or four carriage returns, at most, will bring
control back to the main SNAP/DAS option. There is no limit on the

direction or number of times the user may go back and forth through
the various sub-options.

Program exit may be selected in response to several menus.
However, at any point in the program a control-z will cause an

orderly exit. This is the usual method.

The exit routine calls the dump routines for whichever set of

tables was modified during the session. For the DAS and alternate

tables, the dump routines first transfer the recording parameters,

then print a list of the tables on the aircraft line printer. For
the snap tables, it is only necessary to print the list. During an

automatic run, nothing is printed. During the first manual run
after cold start, both the DAS and alternate tables will be

printed, whether modified or not. Otherwise, only the modified set

is printed.
The DSTAR module includes ii subroutines and calls one

external subroutine (SYM_SEARCH).



250

GLOBAL INPUTS: ALTDMP, CHCNT, COLDST, DASDMP, DDATE, PRINTOUT,

SNAPDMP, SNENT, TERM, TUTOR

GLOBAL OUTPUTS: GETNAME, NOSNAP, RECWD1, SNAPACT



251

MODULE NAME:

FILE NAME:

PROCESS:

NSNAP (New Snap Processing)
DSTAR.FOR

DSTAR

PURPOSE : To create a new snap table or to replace the name and

criteria data for a key variable.

CALLED BY: SNPRC

CALLING SEQUENCE: CALL NSNAP

Alternate entry point: CALL GETKEY

CALLS TO: CHECK, GITEM, SYM__SEARCH, UCASE

DESCRIPTION:

This module establishes a snap table by creating the key

variable as input by the user and also prompting the user for the
conditions under which the snap is to occur. A call is made to

_SYM SEARCH' to search the global variable table for the key
varia-ble to ensure that it is a valid name. As with other DSTAR

modules, prompts are supplied and user inputs processed in an
interactive session. Error messages are displayed as appropriate

to guide the user through the session. The alternate entry point,
GETKEY, is used whenever the user is modifying the key variable of

an existing snap table. Once this determination is made, the logic

path is followed as for the main entry point NSNAP.

GLOBAL INPUTS: ADR, CBUF, CHCNT, LGTH, LPAREN, NNAME, NNENT,

RPAREN, SDONE, TUTOR, TYP

GLOBAL OUTPUTS: ERROR, ITNUM, MAX, SNENT, TABLE, TERM



252

MODULE NAME:

FILE NAME:
PROCESS:

DASDUMP (Dump Recording Tables)
DSTAR.FOR

DSTAR

PURPOSE: To setup DASPAR for use by DDASOT and to print the
recording, snap, and alternate tables if requested.

CALLED BY: DSTAR

CALLING SEQUENCE: CALL DASDUMP

CALLS TO: FMTTIM, FOR$IMVBITS

DESCRIPTION:

If the DASDMP flag is true, the DAS recording parameters are

transferred to the DASPAR buffer from the temporary area DDATA.

Since this affects the data recording process, the NODAS flag is

set to inhibit data recording while DASPAR is being modified.

Likewise, if the ALTDMP flag is true the alternate table data is
transferred to the ALTPAR buffer.

If the PRINTOUT flag is set and DASDMP is true, the DAS list

will be printed. If the PRINTOUT flag is set and ALTDMP is true,
the alternate tables will be printed.

GLOBAL INPUTS: ALTDMP, ATABL,

NNAME, PRINTOUT, TIME
DASDMP, DDATA, DDATE, DNENT,

GLOBAL OUTPUTS: ALTPAR, DASPAR, NODAS, RECWD



253

MODULE NAME:

FILE NAME:

PROCESS:

DASPRC (DAS Table Processing)
DSTAR.FOR

DSTAR

PURPOSE: To serve as the controller for DAS and alternate table

processing.

CALLED BY: DDSTAR

CALLING SEQUENCE: CALL DASPRC

CALLS TO: FOR$CLOSE, FOR$OPEN, GITEM, UCASE

DESCRIPTION:

This module serves as the user interface to DSTAR for all DAS

and alternate table functions. Menus are displayed to the user

from which the desired functions may be selected. These functions

include modifying the DAS list, modifying the alternate tables,

writing the DAS or alternate table modifications to disk, reading

the specified DAS or alternate table modifications from disk, and

printing the DAS list and/or alternate tables.

The user supplies inputs in response to program prompts once

the desired function is selected. Error checking of inputs is

performed and informational messages are displayed to guide the

user through an interactive session.

GLOBAL INPUTS: CBUF, CHCNT, DDATE, DNENT, ITNUM, TUTOR

GLOBAL OUTPUTS: ACNT, ALTFLG, DASDMP, DASFLG,

GETDAS, GETOLD, MAX, TABLE, TERM

DCNT, ERROR,



254

MODULE NAME:

FILE NAME:

PROCESS:

GITEM (Get Item Definition)
DSTAR.FOR

DSTAR

PURPOSE: To prompt the user for an item name and scale factors as

necessary.

CALLED BY: DASPRC, NSNAP, SNAPMOD

CALLING SEQUENCE: CALL GITEM

CALLS TO: CHECK, SYM_SEARCH, UCASE

DESCRIPTION:

This module serves as the user interface for the input of any

global variable, scale factor, or snap criteria data. These data

may be processed from user supplied interactive inputs or

previously saved changes recovered from a disk file. For each

global variable name specified, a call is made to the _SYM SEARCH'

module which searches the global symbol table to ensure that it is

a valid name. SYM SEARCH also returns the variable address, type
(real,integer, etc._, and length in bytes which are used for

creating the various recording tables or the snap tables.

As with other DSTAR modules, this one also provides prompts
and processes user supplied inputs. Error checking is performed

and messages displayed to guide the user as necessary. Limit

checking is performed on DAS entries and alternate table entries (a

max of 50 entries allowed for each for saving on disk).

GLOBAL INPUTS: ACNT, ADR, ALTFLG, ASTER, CBUF, CHCNT, DASFLG,

DCNT, GETNAME, LGTH, LPAREN, MAX, REPEAT, RPAREN, SDONE,

SMOD, SNAPACT, TABLE, TYP

GLOBAL OUTPUTS: DNENT, ERROR, GETDAS, GETOLD, ITNUM, SNENT, TERM



255

MODULE NAME:

FILE NAME:

PROCESS:

CHECK (Check for Multi-item Entry)
DSTAR.FOR

DSTAR

PURPOSE: To return the location in an input string of a 4(,),

character sequence.

CALLED BY: GITEM, NSNAP, OLDSNAP

CALLING SEQUENCE: CALL CHECK

CALLS TO: None

DESCRIPTION:

Check returns an index, relative to the beginning of a

character string, of the location of the left parenthesis (LPAREN),

asterisk (ASTER), and right parenthesis (RPAREN) if they exist.

The variables used by CHECK are located in a local common area.

These variables include CBUF, a 14 character buffer containing the

input string; CHCNT, a character count which may include blanks;

and LPAREN, ASTER and RPAREN which were previously defined. In

addition to the indices returned, CHCNT will be updated to reflect

the elimination of any embedded blanks.

If the character string is not found, LPAREN, RPAREN, and

ASTER are set to zero and a return is made to the caller. An error

check is made to ensure that the left parenthesis occurs before the

right parenthesis. If it does not, the following message is

displayed at the user's terminal:

" NO RIGHT PAREN ! TRY AGAIN "

GLOBAL INPUTS:

GLOBAL OUTPUTS:

CBUF, LPAREN, RPAREN

ASTER, CHCNT, ERROR



256

MODULE NAME:

FILE NAME:

PROCESS:

SNAPDEL (Snap Delete)
DSTAR.FOR

DSTAR

PURPOSE: TO delete a previously entered snap table.

CALLED BY: SNPRC

CALLING SEQUENCE: CALL SNAPDEL

CALLS TO: FORSBITEST

DESCRIPTION:

This routine is used to delete a snap table from the current

working set of DSTAR snap tables. It is not used to delete

previously saved snap tables from disk which may be accomplished by

using the appropriate VAX/VMS commands (See VAX/VMS DCL Dictionary
for details). The desired snap table number for deletion is

entered by the user prior to this routine being called by SNPRC.

GLOBAL INPUTS: None

GLOBAL OUTPUTS: DEL, SCRIT, SNAME, SNENT



257

MODULENAME:
FILE NAME:

PROCESS:

SYM SEARCH (Search Symbol Table)
SYM SEARCH. FOR

DSTAR

PURPOSE: To look-up information about a flight software global
variable.

CALLED BY: DSTAR

CALLING SEQUENCE: CALL SYM SEARCH(SYMBOL,ADDRESS,FORM, SIZE)

CALLS TO: GET_BYTE, GET_LONG, STR$COMPARE

DESCRIPTION:

The name of a flight software global variable is passed as a

character string, by descriptor, to SYM_SEARCH as the first calling
parameter. The address, format, and byte length associated with

the variable are returned through the remaining three call list

parameters. When the symbolic name is not found in the global

symbol table, all the return values are zeroed.

The global symbol table is a group of symbol information

packets having the following format.

• Name length
• Name

• Address

• format code

• memory length

1 byte

variable length

4 bytes

1 byte

1 byte

The format codes have the following meaning. The first two

both have the same machine data representation (floating point).

The utility process VIEW differentiates between these by using
floating exponential format to display variables with a format code
of "2".

1 floating point

2 floating point

3 signed integer

4 unsigned hexidecimal
5 ASCII

The symbol search starts at the begining of the global symbol
table. Both the start address of the table and the number of

entries (a global constant) may not be accessed directly from

Fortran because of their definition. They are accessed by

SYM SEARCH by declaring them external procedures and using the %LOC

operator to obtain their value. The utility functions GET BYTE and
GET LONG are used to fetch data from the table as it is searched.

The library function STR$COMPARE is used to find a match in symbol

names. Since this function requires character string inputs, a

descriptor is constructed and passed to STR$COMPARE to make the

global symbol table name appear as a character string.



258

GLOBAL INPUTS:

GLOBAL OUTPUTS:

SYMNUM, SYMTAB

None



259

MODULE NAME:

FILE NAME:
PROCESS:

SNAPMOD (Snap Modification)
DSTAR.FOR

DSTAR

PURPOSE: To modify an existing snap table.

CALLED BY: SNPRC

CALLING SEQUENCE: CALL SNAPMOD

CALLS TO: GETKEY, GITEM, SNAPDUMP, UCASE

DESCRIPTION:

This routine permits the user to modify a previously completed
snap table. The snap table to be modified is entered by the user

in response to a program prompt prior to this routine being called

by SNPRC. Modifications are then made in response to program
prompts which guide the user through a session. Inputs are error

checked and appropriate messages displayed on the user's terminal

when errors are detected. Any data in the snap table may be
modified including the key variable.

GLOBAL INPUTS: CBUF, CHCNT, MOD

GLOBAL OUTPUTS: ERROR, GETNAME,

SMOD, SNAME, TABLE, TERM
ITNUM, MAX, NNENT, SCRIT,



260

MODULE NAME:

FILE NAME:

PROCESS:

PURPOSE: To serve as

processing.

CALLED BY: DDSTAR

SNPRC (Snap Processing)
DSTAR.FOR
DSTAR

the executive routine for all snap

CALLING SEQUENCE: CALL SNPRC

CALLS TO: NSNAP, OLDSNAP, SNAPDEL, SNAPMOD

DESCRIPTION:

SNPRC prompts the user for desired snap table actions and
calls the appropriate subroutines to accomplish them. These

actions include creating/modlfying snap tables, recovering snap
tables from disk, and preserving snap tables on disk.

GLOBAL INPUTS: CHCNT, SNENT

GLOBAL OUTPUTS: DEL, MOD, NNENT, SNAPSAV, TERM



MODULENAME: SNAPDUMP(Dump Snap Tables)
FILE NAME: DSTAR.FOR
PROCESS: DSTAR

PURPOSE: To print a copy of the selected snap table(s).

CALLED BY: DDSTAR, SNAPMOD

CALLING SEQUENCE: CALL SNAPDUMP(tnum, nent)

where:

CALLS TO:

DESCRIPTION:

261

tnum - table number to dump (zero indicates all

tables are to be dumped)

nent - output parameter containing number of
entries found in the table. (n/a when tnum is

zero)

FMTTIM, FOR$BITEST

This routine displays the specified snap table at the user's
terminal or all snap tables on the onboard line printer if _tnum'

is zero. It may be used to review snap tables prior to flight or

storing them on disk. It may also be used to obtain a listing of

the current working set of snap tables for record keeping purposes.

GLOBAL INPUTS: DDATE, SCRIT, SNAME, SNENT, TIME

GLOBAL OUTPUTS: None



262

MODULE NAME :

F ILE NAME :

PROCESS :

OLDSNAP (R/W Snap Tables to Disc)

DSTAR.FOR

DSTAR

PURPOSE: To read or write a snap table to or from a disk file.

CALLED BY: SNPRC

CALLING SEQUENCE: CALL OLDSNAP

CALLS TO: CHECK, FOR$CLOSE, FOR$OPEN, SYM_SEARCH

DESCRIPTION:
If a file is to stored on disk, a test is made to ensure that

a snap has been defined, if not a message "NO SNAPS DEFINED,
NOTHING SAVED" is displayed. If a snap has been defined, the user

is requested to enter a file name. Error checking is performed for

all I/O operations and an appropriate message is returned for any
detected errors. A successful write operation is announced by the

message "SNAP TABLES SAVED ON FILE filename" where _filename' is

the user supplied name.
If a file is to be recovered from disk, the user is requested

to enter the desired file name. As for the store function, error

checking is performed for all I/O operations and appropriate

messages returned for any detected error. When the data have been
read from disk, each entry is processed as if it were entered from

the keyboard. This ensures that data requested from older versions
of the flight software are valid with the current version. Once

again, an error message will be displayed for any variable not
found in the current global symbol table. If no errors are

detected, the message "SNAP TABLES RECOVERED" is displayed on the
user's terminal.

GLOBAL INPUTS: ADR, CBUF, CHCNT, ERROR, LGTH, LPAREN, RPAREN,

SNENT, TYP

GLOBAL OUTPUTS: SNAPDMP, SNPSAV, SRST



263

MODULE NAME:

FILE NAME:

PROCESS:

UCASE (Convert to Upper Case)
DSTAR.FOR

DSTAR

PURPOSE: To convert lower case ASCII characters to upper case.

CALLED BY: DASPRC, GITEM, NSNAP, SNAPMOD
CALLING SEQUENCE: CALL UCASE(cbuf, chcnt)

where: cbuf - character buffer containing data

chcnt - number of characters to convert to upper
case

CALLS TO: None

DESCRIPTION:

The input characters are tested to ensure that they are in the

range a - z and then converted to upper case if they are.
Otherwise the characters remain unchanged.

GLOBAL INPUTS: None

GLOBAL OUTPUTS: None



264

APPENDICES



265

Appendix A - Digital Systems Diagrams

HNAVFS Procedure ................ 266

HNAVML Procedure ............... 270

HNAVB Procedure ............... 272

HNSWIT Procedure ............... 275

MLSEX Overview ................. 277

TRALCBA Procedure (HVGUID) ............ 278

LATCMD Procedure ................. 280

CMPF Procedure ............... 284

LATRL Procedure ................. 285

FRCWS Procedure ............... 287

RCOM Procedure .............. 288

RBASC Procedure ............... 289

RCOMA Procedure ............... 290

RBASCA Procedure ............... 291

DCRAB Procedure ............... 292

HVG6 Procedure (HVGUID) ............ 293

VERCMD Procedure ................ 294

PAL Procedure ............... 298

ELEVP Procedure ................. 299

PFFD Procedure ............... 301

PAFD Procedure ............... 302
PVPC Procedure ............... 304

VTFCL Procedure ............... 305

STABP Procedure ............... 306

CDG Procedure (TGUID) ............. 307

SPDCMD Procedure ............... 308

ATHCL Procedure ................ 310

MLOG Procedure ................. 311

Note: The above drawings are produced in single page format

for ease of reproduction. They are available on electronic media

(Mac Draw II) should you wish to make your own copy in a more

readable size. To receive a copy please contact David Wolverton at

the following address:

Computer Sciences Corporation
3217 N. Armistead

Hampton, VA 23666
Phone (804) 865-1725.



266

t

!



267

A

I i !

AAA

, |



268

III

]i'i

I

"7"

Ibl

i

|

l Jll11!i
Ii ._

l l_i,j

,A

I
i

II

il!l 

A

6

|

l

A



269

.J! !_

|

l.lti

'1
¢
.. I

ij

---Jt

I

v
A

!:_ g
! " i

l! |.

!I!_,
A&



270

E
- !

i

[,3

U
b

!

I

111!

K

L
I

[][_

l!i!!
,, ®



271

E

j-



272

|
[

lq!

,' A,_

i

,_____J

|

i

hi!,
i

!

llIJ
I
I
!

I i-F_

d_
-I,

i
B Ii

J_J

11

A

I

il!|" _.,_-.
•! ttl_|

Y ..IU

Htiliil
AAA



_I!Ii
AA

A

iil! _.,,.-_l'!II
ii! i Illll!!

ZkAI_

2"73



274

,,,%.

!

!!i_!!'i

if!illif!
A,_AA



275

i

lili

|

|

:ll

_p

MO.

|

r

!

AA_



276

A

i

M

A

i
!



II

IIJ

,

im --

tjII
i
I

I
I

!

I
I

I ,

li

t'1
L,

277



278

--4

D

Ill
V

,i
!

I
I

I

I

]

H-

i,!]
| i[

i,i I
i

k
\

I

i II
II

J

I ill f |
v ! !

!

i
I

i I

i



"][II ,l
. ,I

'ff
i

/
1

A

I

!

Ill

I'
!

II

®

A

!.
I_ IIII

il',i II

i

I
i

,,%

|
i

i

!

'If
I

I

I
I

i

i

_E,'J

i
i

AmA AI

'°I"Ex'',_ Ill

IllO]I]!]

279

6
v

I,I,I,I,
lilili

AAAAA



280



281

i

&

i

|

i '



282

|i

/x/x A/x



283

,I

II

f

[[ I

,|



284

ch

i_.

!

!

A

|

|

J I_I!
&/5,A



285

I

!

[

$

+ll m++- + :
+; ++,+ +

+_[tl _+ ++
I+ ++

+++i+'
/_AAA



286

A "" [

! '!

!

E,3 '[]
J

4_

A

i

!

i

in

|



@

] I]

L
i

8

[

]
!
.%

H

I

d

!i

A

287



288

I

A AAA

AA A



289

Ill

i 5

I!
!
_j

I A

t i

! .

A AAA

A
_J

7
a_



290

I]

ii
|i '

1111

I !

l

, -------0

I'i
6_

AA

1!,



291

U

A

¥

I

v 0

d



292

E3

E

b

i

I

o

i'__[H

|



293

I

A

J

i,

I!o|
Q '

i

!
I

I

A

, !}

i, j:{! i_
li ti _a

1
i
! I

lii"
it ti _

AA_



294

I

P

lq

I..

v

E3_

!

|,

U
S'

1[

I

II

|
.l

i

,A

ITII]

,i

• ![

!iitli
AAA



295

II

i[[
!

'II
i

g

[) {
Ir|

F"
I|1

b LJ
ili
_1_

i
[

i

2i
i.+

Ci_--
1

I_ II
i![[

li II

i
i II

j II

rn I

.-'G .'i i .

!i ' "
It |

Ii _'t I

AA A

i

I t1| ,,_



296

ii !l
illl
%J

i

...J,._-J,'-.,
i

1

!

1

I

.tj
|

E2

. |'! i

|Is

lJ
...,|

!

I
I

%

i

I
i

E_

o o
..t' '

AA



297

d

J

_'il|_J

|

i

l



298

II

---_}

11'

@
I

r_
_r-



299

l

I

I

I

I

I

I

[_

.%
_J

l__ _,

|

111
V

A



300

|

J

_R

i|

u

II "

m

8

|
÷

J%

%/

o

e

!
A



301

1

o

I"1 ""

1

@

IWa

ill -4 ,

|'--

t+ !_+ l+

li nl
J •

i ÷

-V.

|

i+

+ +i
II

D

J

Q_

7 _ |+.a
J _E

Ji

IZ:^

i i

z_,A



302

"3

W l
!

_I[,j

oj.. _.
ijl I|

FI

Isl"[3lI,,,

!

hi •

8. i -_"

r_,i]

.j ,!

Q_

A_



J

_q
A

g

&A.

303



304

E_

_@N i

M
z

f- A



A

I ,! o

D

Q

Q
mr
T

" iI
v

Ira%

A

r_

.J

\

|

305



306

|
i

A

A

--A
O

_a

4-

A

_- ^



307

j_
%

[]

I!'

m-q

_N
lU

IL

i-

ra

i

l

iIIi II
£ I

iJ
i

il
£
0

A I,, ,,
_-_r_E_ A AAAA

|

" [II
£



3O8

]

r.,

--4

i,

[]
li
I"

$

t

[]

J

1il

]
i

[]

!

111

AAA



309

,j

RI! il! !1!

b

!



310

,11

A



311

'!!!i!
|l

i

Ii
_?--"

,A

'il

A

' I
° i

jr_i

i

i

,j II

1!'

 ii! ii
II

J

!t i_, i

_' ! 1!
- 1

AAAA



312

THIS PAGE INTENTIONALLY LEFT BLANK



PREIII)_G P_SE 6LA_K NOl FI_.MED

APPENDIX B

313

HORIZONTAL/VERTICAL GUIDANCE COMPUTATIONS:

The HVGUID software receives information about the present

position of the airplane from the navigation software (HNAVFS) via

data stored in global sections. Planned flight path information

is obtained from the guidance buffer which is prepared by the path

definition (PATHDF) software. These two sets of data are used in

the computation of the major outputs of this module: cross track

error (XTK), track error (TKE), advanced lateral control bank

angle (ALCBA), altitude error (HER), commanded altitude rate

(HDTC), planned flight path angle (PFPA), nominal ground speed

(SDC) and acceleration command (SDD).

The outputs from HVGUID may be separated into horizontal

(XTK, TKE and ALCBA) and vertical (HER, HDTC and PFPA) axes, with

a short section devoted to the ground speed commands (SDD, SDC).

The horizontal and vertical axes will be discussed separately.

Horizontal Guidance:

Processing begins in the HVGUID procedure and any of four

different paths can be taken from there -- Initialization,

Straight Segment processing, Turn processing, or Path Termination.

Once the horizontal path calculations have been completed, control

passes to the vertical guidance equations or to the executive if

path end has been reached.

I. Initialization:

The initialization path is taken if either of the flags

GUID2D, and NAV64K are not set. GUID2D is set when there are at

least two waypoints in the guidance buffer and NAV64K is set when

the ground speed exceeds 64 knots.

During initialization, the 'to' waypoint pointer (TOWPT) is

limited to two or more ('2' indicating the second waypoint on the

path) with the assumption that the airplane is initially in the

area of the first waypoint. The pilot may select any waypoint on

the path (except the first) as the 'to' waypoint via the CDU

select page.

Once the proper 'to' waypoint has been determined, the 2D

pointer (PTR2D) and the 4D pointer (PTR4D) for the airplane are

set and the HVGPI flag is cleared. The HVGPI flag is used to

indicate that one pass has been made through the HVGUID routine.

After the HVGPI flag is cleared, the program clears certain

variables, sets up the waypoint normal vector (UI2C) and transfers

to the Vertical Guidance Off procedure (GD3D).



314

II. Straight Segment Calculations:

At the beginning of the straight segment the following flags

and variables are cleared in the LEGSW procedure: TURN (Airplane

in Turn Flag), TEND (Airplane halfway through Turn Flag), ALCFLG

(Advanced Lateral Control Flag), ALCBA (Advanced Lateral Control

Bank Angle) and AMG (Angle Made Good)• In addition, DTOGO (Abeam

Point to Next Waypoint Distance) is initialized to the initial

value of DTG (Distance To Go). HVGPI is then set and DTOGO is

calculated from then on by the regular guidance equations.

The following quantities are computed in the straight segment
portion of the routine:

i.) Airplane Position Unit Vector (P0)"

The airplane position vector is one of the primary references

in the Guidance Equations• The Airplane Position Unit Vector (P0)

is calculated from the airplane latitude (LAT) and longitude (LON)

supplied by the navigation algorithms• This value is computed in
procedure HVGUID as follows:

A r sin (LAT) 1 FSLAT 7
= i-SLO *C,AT i

P0 = I-COS(LAT)sin(LOW> CLON*CLAT L COS(LAT) cos(LON)

The values CLAT, SLAT, CLON and SLON are the cosine and sine

of latitude and longitude as computed by the Navigation equations.

The following figure describes P0 in relationship to the position
of the airplane and the path.

WPV(i)_ _.+__WPV(i+I)

•o

"o

o

°

A •

P0_: ."

; o'

• ; ,°

"o :,•

°"

•°

°"

•°

Figure B-I. Position Unit Vector (P0)



315

2.) Abeam Point Unit Vector (POP):

The Abeam Point Unit Vector (POP) points to the location on

the great circle path to which the airplane has progressed at any

time. A line from the airplane perpendicular to the plane of the

great circle intersects the plane at point B, and the extension of

a straight line from the earth's center through B intersects the

great circle at the abeam point POP. The components of the

corresponding unit vector P0P are found by subtracting the

component of P0 which is perpendicular to the plane of the great

circle (i.e., parallel to UI2C) from the vector P0 as follows:

POP -PO - (PO • UI2C) * Ul2C)

where : UI2C is the Flight Path Normal Unit Vector

(WPT ACT(i).NMV), calculated in the Path

Definition routines.

POP locates the point on the great circle path to which the

airplane has progressed at any particular time; therefore, the

point POP is sometimes referred to as the airplane's 'progress

point' as illustrated in figure B-2.

POP

WPV(i- WPV(O

," o °

", q, •

',.

°_ ; .,

POPA
^

WPVli-1) "_, .,_ .4,,_PV(i)
• .Q

". ," •

; .°

Figure B-2. Geometry of the Abeam Vector



316

3.) Abeam Point to Next Waypoint Distance (DTG) :
The great circle distance from POP to WPV(i) is found by

computing the angle subtended at the earth center by the unit
vectors POP and WPV(i), and multiplying this angle in radians by
the earth radius. The length of this cross product could be found
by squaring each component of the product, adding and taking the
square root. However, this lengthy computation can be avoided by
dotting the cross product into the normal unit vector UI2C. Since
POP and WPV(i) both lie in the plane of the great circle, their
cross is perpendicular to that plane and therefore parallel to
UI2C as given by:

sin(B) = (POP X WPV(i)) • UI2C

where: UI2C is set to WPT_ACT(i).NMV in mainline code.

In addition to reducing computational time, the general

technique of using the cross and dot products together makes it

possible to maintain the sense (positive or negative) of the

computed quantities. The cosine of the angle is found from the

dot product as follows:

cos(6 ) = P0P • WPV(i)

The angle is found from a double argument arctangent

subroutine, hence the distance is given by:

DTG = Re * arctangent(sin(_), cos(_))

where: Re is the local radius of the earth.

WPV(i-1)
WPV(i)

U12C

Figure B-3. Abeam Point to Waypoint Distance



317

4.) Abeam Point to Middle of Arc at the Next Waypoint Distance
(DTOGO):

The purpose of the Abeam Point to the Middle of the Arc
Distance (DTOGO) is to aid in determining the time to the next
waypoint. The DTOGO value is determined by subtracting the
Tangent Point to Waypoint distance, DTT(i) from the Abeam Point to
Waypoint distance (DTG), and then adding the half Arc Distance
(A02) as given:

DTOGO= DTG - WPTACT(i).DTT + AO2
m

DTG
DTOGO _ DTT

........ w v ,l

ij I

Figure B-4. Abeam Point to Middle of Arc

If the upcoming waypoint is the inbound waypoint of a DME-

Arc, then the equation for the Abeam Point to the Middle of the

Next Waypoint is simply the Abeam Point to Waypoint Distance (DTG)

as given:

DTOGO = DTG

POP

.-9-- DTOGO--_

k .... WPV(i)

Figue B-5. DME-Arc Distance



318

5.) Crosstrack Distance to the Planned Flight Path (XTK) :
The crosstrack distance to the planned flight path (XTK) is

used to compute the Lateral Steering Command (LATSTR) as well as
determining the status of the Be Careful Flag (BCFLAG). The
crosstrack distance is the distance from the airplane to the abeam
point. It is positive when the airplane is to the right of the
path. The distance is computed by multiplying the angle between
the airplane position unit vector (P0) and the abeam point unit
vector (POP) in radians, by the radius of the earth as given:

XTK = Re * arctangent(sin(a), cos(a))
Where: Re = local radius of the earth

sin(a) =-P0 • UI2C

cos(a) = P0 • POP

: :

U'l_C _ ........

Figure B-6. Crosstrack Distance



319

6.) Desired Track Along a Great Circle Path (DSRTK) :

By definition, the desired track is the track angle relative

to true north of a vector tangent to the great circle path at the

abeam point POP, pointing in the forward direction along the path.

The computation of the desired track involves the unit normal

vector (UI2C) and a unit vector M which points westward at POP. A

westward pointing vector was chosen because, unlike a north

pointing vector, one component is always zero and the other two

components depend only on longitude, thus simplifying the

calculations. The vector M is given by the equations:

U

where LON is the longitude at the abeam point POP. The

orientation of the unit vectors M and UI2C to the path are shown

below.

N

WPV(I-1) "....

o=

DSRTK

POP
.

WPV(i)

°°°'°,°°° ,°o , '"

°, "

"°° "o

° °. "°

/% "..;.
U12C(i) "i ........ "_

Figure B-7. Desired Track



320

The desired track DSRTK is found from the equation:

WPV(i-1 )

DSRTK - arctangent(sin(A), (cos(A))

Where: sin(A) (UI2C X M) POP

cos(A) -- UI2C • M

WPVli)

^ i
U120(i)

A

Figure B-8. End View of POP

The computation of sin A utilizes a dot product with P0P to

convert the vector M x UI2C to a scalar quantity. This is

legitimate because POP is a unit vector parallel to M x UI2C.

7.) Track Angle Error (TKE):

The Track Angle Error is used as one of the parameters in the

Lateral Steering Command (LATSTR) calculations. This value is

computed from the airplane's track (TK) and the Desired Track

Angle (DSRTK).

TKE = TK - DSRTK

DSRTK

II_TK

Figure B-9. Track Angle Error



321

III. Turn Computations:

The turn calculations start when the Abeam Point of the

airplane gets to the Tangent Point of the turn as shown below.

-,_ ..... DTG .....

POP r_
(Circular Tu

•,gP-DTG I,,,-

POP __
(DME-Arc)

Figure B-10. Distances to the Turn

There are three criteria for determining that the guidance
routine should be making turn calculations:

i. TURN = TRUE

2. DTG < (VGS * DELTAT)

3. DTG < WPT ACT(I).DTT

The first check is for the turn discrete (TURN). If the

guidance equations have previously decided that the airplane is in

the turn, TURN is set. The second test determines if the distance

the airplane will travel before the next time through the loop
(VGS * DELTAT) is greater than or equal to the Abeam Point to Next

Waypoint Distance (DTG). This test is used in the DME-Arc case

where the inbound waypoint WP(IN) is at the Tangent Point. So

when the airplane passes the waypoint, the guidance routine should

switch to the turn calculations. The third test is for the
circular turns.



322

The following quantities are computed in the Turn portion of
the routine:

I. The Magnitude of the Track Angle Change (MAGTA)

2. The Turn Normal Unit Vector (UI2C)

3. The Abeam Point to Middle of Arc at Next Waypoint
Distance (DTOGO)

4. The Crosstrack Distance to Planned_Flight Path (XTK)
during turns

5. The Desired Track (DSRTK) during turns

6. The Turn Angle Made Good (AMG)

8. The Nominal Bank Angle (NOMBA)

9. The Distance Before the Turn to Apply Advanced Lateral

Control (RALC)

I0. The Advanced Lateral Control Exit Angle (ALCXA)

II. The Advanced Lateral Control Bank Angle (ALCBA)

I.) Magnitude of the Track Angle Change (MAGTA) :

The Magnitude of the Track Angle Change (MAGTA) is used to

determine the midpoint and end of a turn. It is calculated by

taking the absolute value of the Track Angle Change (TA) defined

for the next waypoint, as follows:

MAGTA = I WPT ACT(i) .TA f

m m _m,

Angle

Figure B-II. Turn Magnitude



323

2.) Turn Normal Unit Vector (UI2C) :

The Turn Normal Unit Vector is used to calculate airplane

position for Horizontal Guidance during turns• It is derived by

subtracting from the difference between the Airplane Position

Vector (P0) and POP (set equal to the Turn Center Unit Vector

(TCV) in subroutine AAA), the component of that vector in the Turn

Center Unit Vector direction (((P0 - POP) • POP) * POP), as given:

A A A A

UI2C = TMPV - sign(TA) * ((TMPV • POP) * POP)

Where: TMPV = P0 - POP

TA is positive for right turn, negative for left

turns

Turn Center
,=p

..

.o

/%
TCV _b

/%

A PO

•. A /%
". (PO- TCV)

'..: .......... ^ ^
• .... • ((_-'1"_) • TCV)* TCV

.........,2.
U12C

Figure B-12. Turn Normal Unit Vector



324

3.) The Abeam Point to Middle of Arc at Next Waypoint Distance
(DTOGO)

DTOGO is adjusted during turns according to the position in

the turn. During the first half of a turn, DTOGO is the half-arc

distance minus the angle made good times the turn radius:

DTOGO = AO2 - RTN * AMG * DTOR

POP

C_0% .'"'• WPVli)

i/ ...

o.

Figure B-13. Abeam Point to Middle of Arc during
first half of turn

During the second half of the turn, the center-to-center

distance (WP_ACT.CCD) between the previous and next waypoints is
added as follows:

DTOGO - DTOGO + WP ACT(PTR2D+I) .CCD

POP
I

WPV(I) • i

AO2(i) "'".. -- i

WPCCD(i+I)

DTOGO

WPV(i+l)

i _ .e
e.o or°

Figure B-14. Abeam Point to Middle of Arc during
second half of turn



325

4.) Crosstrack Distance to Planned Flight Path during turns

(XTK):

The purpose of Crosstrack Distance (XTK) is to compute the

Lateral steering signal LATSTR and to determine the status of the

Be Careful Flag, BCFLAG. The Crosstrack distance is calculated as

the distance to the turn center, then adjusted by subtracting the

turn radius to reflect the distance from the airplane to the Abeam

Point as given:

XTK = Re*arctangent (-(P0 • UI2C), (P0 • POP)) + RTN * sign(TA)

Where: Re is the local radius of the earth

POP is set equal to WPT_ACT(i).TCV

Figure B-15. Crosstrack Distance to POP

5.) Desired Track Angle During Turns (DSRTK) :

The Desired Track Along the Great Circle Path is used to

compute the Track Angle Error (TKE), an important element of the

Lateral Steering Signal (LATSTR). The Desired Track calculation

is modified during turns by replacing the path normal unit vector

(NMV) with UI2C, and POP with TCV (refer to DSRTK for straight

segments), as follows:

DSRTK - arctangent( ((Ul2C x M) • POP), (UI2C • M) )

N

M

DSRTK

A \

Figure B-16. Desired Track During Turns



326

6.) Turn Angle Made Good (AMG):

The purpose of computing the Turn Angle Made Good (AMG) is to

continually determine the progress of the airplane around the

turn. The Angle Made Good is the angle between the Path Normal

Unit Vector (NMV) and the Turn Normal Unit Vector (U12C), as

given:

A A A

sin(AMG) = (UI2C x NMV(i)) • TCV(i)

cos (AMG) = U12C • NMV(i)

AMG = arctangent (sin (AMG), cos (AMG))

If the turn angle is negative, (.TA(i) < 0), then:

AMG - 360 - AMG

WP(I)

II
i ! •

t ° %

o" _o

i j %
o° A

.." PO "'..

%o _ o"

% • o e

.¥

A

TCV(i)

Figure B-17. Turn Angle Made Good

7.) Nominal Bank Angle (NOMBA):

The Nominal Bank Angle is the bank angle necessary for the

airplane to turn at the specified turn radius. It is used for the

Advanced Lateral Control equations and as an element of the

Lateral Steering Command. It is based on the turn radius and

speed of the airplane, as given:

NOMBA -

where:

arctangent (GSFPS2/ (GRAVO * RTN))

GRAVO = Nominal acceleration of gravity

RTN = Radius of turn in feet.



327

8.) Distance to Apply Advanced Lateral Control (RALC) :

The roll command must be given prior to the point of tangency

(tp) so that the airplane has enough time to be at the proper bank

angle when it begins the turn. The time necessary for the roll is

approximately equal to the nominal bank angle divided by the roll

rate limit of the control system:

t = NOMBA/ROLL RATE LIMIT

Then the distance before the tangent point is:

RALC = NOMBA * 0.25 * GSFPS

, _L_,"9"-- RALC_

Figure B-18. ALC Advance Distance

9.) Distance to Remove Bank Angle Command (ALCXA):

In order to smoothly meet the next leg of a flight path, it

is necessary to begin the roll out after a turn before the end of
the turn. The roll out to wings level is begun when the arc

length remaining is equal to the time necessary for roll out times

the angular speed of the airplane (GSFPS/WPRTN), as given:

NOMBA GSFPS * RTOD RTOD * RALC

Roll Rate Limit RTN RTN

o"

,¢°"

Figure B-19. ALC Exit Angle



328

i0.) Advanced Lateral Control Bank Angle (ALCBA):

The Advanced Lateral Control Bank Angle (ALCBA) is the

element of the Lateral Steering Signal (LATSTR) that represents

the lateral acceleration necessary to stay on the curved path

during turns. ALCBA is only used when the airplane is beyond the

distance before the turn to apply Advanced Lateral Control (RALC)

and has not yet reached the distance before the end of turn to

remove the Advanced Lateral Control (ALCXA). The bank angle is

calculated from the Nominal Bank Angle (NOMBA) and the sign of the

Waypoint Turn Angle (WPTA) as follows:

ALCBA = NOMBA * sign(TA)

The Bank Angle is computed under the following conditions:

I ,

.

,

,

when DTOGO >= RALC + AO2

then: the airplane has not reached the roll-up point
(RALC) and ALCBA = 0

when DTOGO < RALC + AO2

then: past the roll-up point but not yet in the turn

and ALCBA = Sign (TA) * NOMBA

when MAGTA - AMG >= ALCXA

then: in the turn, not to roll out point and

ALCBA = Sign (TA) * NOMBA

when MAGTA - AMG < ALCXA

then: beyond the roll out point and ALCBA = 0



329

IV. Vertical Guidance Computations

The following quantities are computed in the Vertical

Guidance portion of the routine:

i. The Abeam Point Commanded Altitude (HC)

2. The Vertical Path Error (HER)

3. The Vertical Guidance Switch Point Distance (HDIS)

4. The Raw Vertical Speed Command (HDTCR)

5. The Vertical Speed Command (HDTC)

6. The Planned Flight Path Angle (PFPA)

I.) Abeam Point Commanded Altitude (HC) :

The change from WPALT(i-I) and WPALT(i) is a linear

transition with distance beginning at the midturn of WP(i-I) and

ending at the midturn of WP(i). The Waypoint to Waypoint Gradient

(WPT ALT.FPA) describes this transition. To determine the abeam

poin_ planned altitude it is only necessary to subtract from the

waypoint height the product of the Waypoint to Waypoint Path

Gradient and the distance to the midpoint (DTOGO), as given:

HC = WPT ACT(i) .ALT - DTOGO * WPT ACT(i) .FPA * DTOR

(Vertical View)
_,, WP(i).ALT

WP(i 1) ALT_i+I ) ALT

WP(i-1).ALT P_ WP(i).ALT WP(i+I).ALT

(Horizontal View)

Figure B-20. Commanded Altitude

Because the DME-Arc parameters are defined and computed

differently, the computation of HC during the first half of the

DME-Arc becomes:

HC = WP ACT(i+1).ALT - DTOGO * WP ACT(i+1).FPA * DTOR



330

2.) Vertical Path Error (HER):

The Vertical Path Error (HER) is one of the major elements

used in the calculation of the Altitude Rate Command (VSTRA). HER

is the difference between the Abeam Point Commanded Altitude (HC)

and the actual altitude (ALTCOR), as given:

HER = HC - ALTCOR

HER

HC
ALTCOR

Figure B-21. Altitude Error



331

3.) Vertical Guidance Switch Point Distance (HDIS) :
The 3D pointers for the Waypoint to Waypoint Path Gradient

(WP_ACT.FPA) are switched (or updated) prior to reaching the
waypoint to anticipate vertical maneuvers. This is the equivalent
in the vertical axis of the Advanced Lateral Control in the
lateral axis. The switch point is calculated according to ground
speed, change in flight path angle at the waypoint and the nominal
vertical acceleration rate (2 fps/sec):

HDIS = (FPA - FPAN) * DTOR * GSFPS2 / 2

Whe re : FPA is the path gradiant of the present segment (in

radians)

FPAN is the path gradiant of the next segment (in

radians).

If HDIS < 300. HDIS is set to 300.

PTR3D is updated when DTOGO becomes less than HDIS.

WP

HDIS
.... if ............ _P',

Figure B-22. Switch Point Distance



332

4.) Raw Vertical Speed Command (HDTCR) :

The raw vertical speed command (HDTCR) is the input to the

rate limited vertical speed command (HDTC). HDTCR is derived from

the Waypoint to Waypoint Path Gradient (FPA) and the current

ground speed of the airplane (GSFPS), as given:

HDTCR = GSFPS * FPA * cos(TKE)

Where: FPA is the current segment path gradiant (in radians)

5.) Vertical Speed Command (HDTC) :

The vertical speed command is one of the three major elements

which make up the Altitude Rate Command (VSTRA). HDTC is

developed by passing the raw vertical speed command (HDTCR)

through a rate limited lag. As indicated, the lag is 6.25

seconds, with a maximum vertical acceleration of 2.0 fps 2.

KHI LIMIT +2

Figure B-23. Vertical Speed Command

6.) Planned Flight Path Angle (PFPA):

The Planned Flight Path Angle (or commanded gamma) is used in

the calculation of the Flight Path Angle Error displayed on the

CDU. It was previously used to drive the dashed gamma wedges on

an earlier version of the PFD, and may optionally be used to drive

the gamma wedges on the present Primary Flight Display (PFD). The

PFPA is determined by dividing the vertical speed command (HDTC)

by the present Ground Speed of the Airplane (GSFPS).

PFPA = RTOD * HDTC / GSFPS



333

V. Speed Guidance Computations

The following quantities are computed for use in the ground

speed and/or time path (4D) guidance computations:

•

2.

3.

4.

The Average Path Acceleration (SDD)

The Abeam Point Commanded Ground Speed (SDC)

The Airplane Distance Made Good (DMG)

The Progress Distance of the Airplane (DTOTL)

I.) The Average Path Acceleration (SDD) is calculated in fps per

foot as given:

SDD =
KTO_PS * C_T.ACT (?OWPT).GS - WPT ACT (TOWPT-I) .GS)

WPT ACT (TOWPT).CCD

where:TOWPT is set equal to PTR4D except during the

first half of a DME arc turn, when it is set

equal to PTR4D+I.

2.) Abeam Point Commanded Ground Speed (SDC):

The Abeam Point Commanded Ground Speed is calculated from the

defined waypoint groundspeeds (WPT_ACT.GS), the waypoint center to

center distance (WPT_ACT.CCD), the abeam point to middle of arc at

the next waypoint distance (DTOGO) .and the average path

acceleration (SDD). SDC is used for Ground Speed mode and (by

TGUID) time path (4D) guidance.

"SDC = KTOFPS * WPT ACT(TOWPT).GS - SDD * DTOGO

I
I
I

WP(i-1).GS

I
I
I
I

I_ _(i).CCD

WP(i).GS

DTOGO
i=,..=

Figure B-24 Velocity Profile



334

3.) Airplane Distance Made Good (DMG):

The Airplane Distance Made Good (DMG) is the length of the

path segments between both the reference waypoint and the

airplane. The reference waypoint is the waypoint closest to but

behind the airplane and the time box. When the airplane reaches

the end of a path segment, the length of that segment (WPCCD) is

added to DMG as given below. In the TGUID routine the DMG is

compared to the Distance Made Good of the time box (DMG1) and they

are used to update each other.

when:

then:

2 * AMG > MAGTA

DMG = DMG + WPCCD

WP

O.-,,

P

...........Reference

Waypoint
WP

Figure B-25. Distance Made Good



335

4.) Progress Distance of the Airplane (DTOTL):

The Progress Distance (DTOTL) is used in the calculation of

Separation Distance (SEPR) in the Time Path routine. The Progress

Distance is calculated from the Distance Made Good (DMG) plus the

Turn Center to Turn Center Distance (WPCCD) of the _to' Waypoint,

minus the Abeam Point to the Next Waypoint Center of Turn Distance

(DTOGO), as given:

= DMG +DTOTL WPCCD (i ) DTOGO

_WPCCDli)

i DTO

DMG

Figure B-26. Progress Distance



336

THIS PAGE INTENTIONALLY LEFT BLANK



pREImI'_NG P_._,E BLANK NOT FILMED

33'7

APPENDIX C

MICROWAVE LANDING SYSTEM (MLS) OVERVIEW

The conventional MLS ground equipment transmits two cone-

shaped time-reference scanning radio beams from the runway area

(Figure C-3). One beam scans 60 degrees from side to side of the

runway center at a rate of 13 1/2 times per second to provide

azimuth (AZ) referencing. The second beam scans up 20 degrees and

down to some minimum angle above the runway (which varies from

airport to airport) at a rate of 40 times per second to provide

basic glideslope guidance (ELI). A third non-scanning beam

transmitted from a distance measuring equipment (DME) site

provides ranging information. This DME beam transmits on

interrogation and has an angular coverage of 120 degrees in

azimuth and 20 degrees in elevation. Time reference means that

the receiving equipment on the aircraft will measure the time

difference between successive 'to' and 'fro' sweeps of the

scanning beams to determine aircraft position relative to the

runway centerline and to a preselected glide path.

The following discussion is based on the Wallops Island MLS

facility but applies equally well to any MLS installation, except

for specific antenna locations, which would vary from airport to

airport.

The MLS coordinate system (Figure C-I) has as its origin a

point 1283 feet from the stop end of runway 22 at the Wallops

facility. It is located on runway centerline at a height of 41

feet above MSL. The DME is located 6 feet in front of and 62 feet

to the right of the azimuth antenna, which is at the MLS origin.

The EL1 site is offset to the left of the runway centerline by

400 feet (YELl = -400 ft in the MLS coordinate frame) with an X
coordinate of 9218 feet.

Using the computation of the aircraft center of gravity (X,

Y, Z) in the MLS coordinate system, the MLS / Flight Controls

software will track the defined glideslope shown in Figure C-2.

Figure C-3 illustrates the MLS coordinate system with its

origin established at the azimuth transmitter site. The positive

X-axis is defined by the line of zero azimuth. It is assumed that

the azimuth antenna system has been aligned with the physical

runway centerline, i.e, bore sighted, although provision has been

made to operate with an MLS system which has the AZ beam parallel

to the runway but displaced to one side of the center-line. The

positive Z direction is defined vertically up and the positive Y

direction is defined as shown to complete the right-hand Cartesian

coordinate system. Figure C-3 has represented the aircraft at

three hypothetical positions, A, B and C. At position 'A' the

aircraft is to the left of runway centerline, where the viewer is

assumed to be facing in the direction of magnetic runway heading.

The aircraft is at some altitude (Z) above the MLS X-Y

plane. The sense of various quantities are as follows:



338

o positive EL1, Azimuth and 'delta Y';

o positive Rdme X and Z displacement;

o negative Y displacement.

Note that the 'delta Y' (DELTY) signal derived from the MLS

processing is equivalent to the gain programmed localizer

deviation signal ETAFT, derived from the ILS localizer deviation

angle (LOCDEV). As the sense of ETAFT is 'positive to cause a

fly-right command', it is also required that DELTY be defined

with positive sense for fly-right command, i.e, when the aircraft

is to the left of runway centerline.

At position 'B', the aircraft is assumed to be to the right

of runway centerline, therefore DELTY is negative to cause a fly

left command from the lateral control law. Note also that azimuth

is negative at position 'B', while Y(mls) is positive.

Although not obvious from Figure C-3, Z may be either

positive or negative. Likewise, X could be either positive or

negative (assuming ground equipment with a 'back azimuth'

capability) but the present software does not support this.

The planform view of the aircraft, with aircraft heading

equal to runway heading, is shown at position 'C'. This

illustration is presented to clarify velocities and accelerations

developed relative to aircraft body axes, versus velocities and

accelerations expressed in MLS coordinates. Two factors are

responsible for some confusion over these items:

o In the normal landing attitude the X-body axis lies

in a direction approximately 180 degrees to the X-

axis of the inertial MLS reference frame.

o In the normal landing attitude the Z-body axis lies

in a direction approximately 180 degrees to the Z-

axis of the MLS reference frame.

These factors result in the following:

X(mls) = -X(body)

Y(mls) = Y(body)

Z(mls) = -Z(body) = h

The parameters XDME, YDME and ZEIG are simply defined with

respect to the MLS coordinate system: if the DME transmitter is

located to the left/right of the azimuth transmitter, the YDME

parameter will have negative/positive sense; if the ELI antenna is

located above/below the MLS X-Y plane, the ZEIG parameter will

have positive/negative sense. Table C-I lists several of the

frequently used parameters in the MLS software and their

respective polarities.



339

ITEM

Az

DME

Ell

TP6

TPI2

TP74

TP75

LATITUDE

37. 923962

37.924066

37.944799

37. 926944

37. 929268

37. 946930

37. 947274

LD_S//Um_

-75.473675

-75.473845

-75.455473

-75.471304

-75.469457

-75.455418

-75.455145

41.1

49.7

34.7

34.2

34.8

32.6

32.2

True Heading Runway 22 = 212.193"

L.

YA6' I- TP6

Az x _ _:_

Z_ma _-1283.5'_

8747.8'

147.8TP74 TP75

400 ' EL1

T °
I

9218.3 ' _--i813'

10031.3' _'_

FIGURE C-I. WALLOPS FLIGHT CENTER MLS Antenna and

Test Point Locations on Runway 22



340

>
N

>
:m

(9

C_
I
50

6_

0_
m
U)

p-,

O

m

c_

l.J.

rt
l.J.
0

m
I-,
0

m
rt

0
m

\

\

\

\

\

\

\

\

\

\

\

\

\

X
!

X

"o
n



341



342

TABLE C-i MLS PARAMETER INFORMATION

VECTORS:

E_zJ._Lmaml

ACC

ACCHAT

BIASBA

BIASIR

BMACC

EX

MLSRAW

MLSS P

MLSS PRED

OTLERR

POS CG

POSHAT

VELHAT

XHTP

CFILT

CFILT

CFILT

CFILT

IOFLL

CFILT

IOFLL

PFILT

PRINV

CNTRM

XYZIN

CFILT

CFILT

CFILT

XDD, YDD, ZDD

XDDH, YDDH, ZDDH

(est of bias on BMACC)

(est of bias on IRS Acc)

Ax, Ay, Fn

{POS_CG} - {XHtp}

R, AZ, EL1

Rhat, Azhat, ELlhat

Rp, AZp, ELIp

{MLSRAW} - {MLSS PRED}

X, Y, Z (Compt'd)

Xhat, Yhat, Zhat

XDH, YDH, ZDH

(Updated POSHAT)

POLARITY INFORMATION:

R, Rhat, Rp

Az, Azhat, Azp

Eli, Ellhat, Ellhat

X, Xhat, XGPIP

Y, Yhat, YPROF

Z, Zhat,

XDH, YDH, ZDH

XDDH, YDDH, ZDDH

HGPIP

ETAH

BETAH

always positive

+ left of Rwy C.L.

+ above phase center

+ from Az antenna to threshold

+ right of Rwy centerline

+ above MLS X-Y Plane

+ on increasing X, Y, Z

+ on increasing XDH, YDH, ZDH

+ when GPIP below MLS X-Y plane

+ above glideslope

+ left of Rwy centerline

MCONF BIT CONFIGURATION:

BIT KQQLY2ULZ2_ USE

15 MLSC

14 RLMLS

13 (EL2F)

12 BMAF LG

11 S IMI LS

10 VGS FLG

9 MSW6

8 MSWI

7-0

Enable MLS computations

Use MLS data in Flight Controls

Update IDD on first pass of MLSMOD

Use body mtd vs. IRS accel's in CFILT

Simulate ILS signals from raw MLS

Use VN and VE vs. prefilter velocities

velocities to initialize XDH, YDH

Use MLS ZDDH vs. HDDF in VCWS,

Auto, and glidescope tracking
Use MLS derived values in flare

control law

Unused by MLS



343

Appendix D - VIEW Command Entries

When entering commands to VIEW, the entered text is shown

below the last display line. The prompt "->" is shown while VIEW

is accepting input. While the VIEW prompt is displayed the values
of the variables on the display lines are not updated. This

"freezes" the state of all displayed variables at the time input

was started. To perform a value "freeze" when no actual entries

need to be made, enter a blank space to get into update hold. A

carriage return will send a null command to VIEW which will return

to standard update mode.
The following pages contain a description of the commands

available for VIEW users. When the complete format of a command is

given, optional parts are delimited by square brackets. The last

page of this section contains examples of VIEW commands with a

brief description of the actions performed.

** Displaying Variables **

Flight software global variables may be placed on the VIEW

display screen by entering their name followed by one or more

options. The general format of this command is shown below.

<name> [([+]n)] [/L=n[/I]] [/F=a[.n]] [/R=n] [/D=a] [/S=n]

The various options are used to override default actions from VIEW.

SUBSCRIPT / OFFSET

A numeric value may be entered, enclosed in parentheses,

immediately following the symbol name. VIEW interprets the number

in one of two ways. If the entered value is an unsigned constant
then the value is treated as an array index. VIEW uses the index

to determine which of several consecutive data items should be

displayed. When the value is preceeded by a "+" or "-" sign the
value will be used as a direct byte offset from the address

associated with the variable's name. When no subscript is supplied

the base address of the entered variable is used. Note that

entering "(i)" or "(+0)" after a variable shows the identical

memory location as is seen when the variable's name is entered by
itself.

/L

This switch is used to select the line on the display screen

(1-20) where the variable will be placed. The default is the first
line after the last used line. When the /L option is used any

variable already show on the chosen line will be erased. If the

new variable is to be inserted at the line the /I switch must be

used in conjunction with /L. When the /I is used the variables on



344

the rest of the display page are moved down to make room for the

new entry. Note that variables at the bottom of the display page
will be pushed of the end of the page.

/F

This switch is used to override the default format stored in

the VIEW symbol table. There are two parts to this switch; The

format type and the format length. The format length indicates how

many bytes of memory belong to the variable and the format type

defines how the data at that location is interpreted. The
following table shows the five format types and their valid data
lengths.

FORMAT LENGTH DES_RIPTION

F 4,8

E 4,8

I 1,2,4

H 1,2,4
A 1 - 8

floating point format

exponential floating point

signed decimal fixed point

unsigned hexadecimal fixed point
ASCII text

Note the byte length defaults to 4 when not supplied.

/R

The repeat count is used to display a group of consecutive
memory locations each having the same data format. The default

repeat count is one, which shows the symbolic address location
only.

/D

This switch overrides the default description label placed
alongside an entered variable. VIEW uses the entered variable name

as the label by default. Any ASCII text string may be used, up to
14 characters long.

/S

This switch defines the number of lines to be used for an

update sequence of the selected variable. An update sequence shows
the last "n" sampled values of the chosen variable. For each

update cycle of VIEW only one line in the update sequence is
changed to reflect the most recent sample of the variable. When

the line is updated a two digit hexadecimal sequence number is
appended to the end of line. The sequence number is used to denote

which line within the update sequence was updated last. On the

next update cycle the next line within the sequence is changed.
Past values of the variable remain on the screen on the other lines

of the update sequence. Note that only one update sequence may be
in effect at a time.



345

** Modifying Variables **

A value may be stored into a variable which is shown on the

VIEW display line by specifying the line number and the desired

value. The entered value must be appropriate for the format used

to display the variable. The format of the command is as follows.

#<line>=<value> [/R=n]

Note that variables on several consecutive display lines may

be modified by using the /R switch to supply the count.

** Deleting Display Lines **

This command is used to remove a variable from the VIEW

display. The format of the command is as follows.

-<line> [/C] [/R=n]

The /R switch is used when several consecutive lines must be

removed. If it is desired that the variables following the deleted

lines should be moved up to fill the vacated space the compress

switch (/C) is entered. To remove all the variables from the

display use "-*"

** Changing Pages **

VIEW has four display pages consisting of twenty lines each.

Simply enter the desired page number, no <CR> necessary, to get to

the desired one. Note that entering the current page number is a

convenient way to erase unwanted output showing on the CRT screen.

** Creating Command Sets **

A sequence of VIEW commands may be saved on a file for use at

a later time. To enable command logging enter

\<file>

where <file> is the name of the disk file where the VIEW commands

are to be stored. To disable logging the "\" is entered again with

no file name appended. Note the standard VIEW prompt "->" is

changed to ">>" when command logging is enabled. Erroneous VIEW

entries, which cause the display of an error diagnostic, will not

be added to the command log.

There is one VIEW command which is valid only while logging is

enabled. The " " command places a pause into the command set file.

Later when the command set is executed the stream of VIEW commands

will be interrupted at the point where the " " was entered. Two

options exist for continuing from a pause during command set

execution. An <esc> entry terminates the command set, returning



346

VIEW to standard update mode. Any other key stroke will cause VIEW
to continue on with the remainder of the command set.

Built in command sets can be created from a command log file

by using the program VIEW_SET. To use the program enter

RUN UTL:VIEW SET

on the software development VAX. The SETUP.MAR file linked with

VIEW can be modified by this menu driven program. After exiting
VIEW SET the SETUP.MAR file must be assembled and a new VIEW.EXE

must--be created using the linker.

** Predefined Command Sets **

An entire set of VIEW commands may be executed by using a

predefined command set. The format of the command is as follows.

@n or @<file>

When the @n form is used one of the built-in command sets is

executed. To get a directory of all the built-in command sets
enter @0. To execute a built in command set type the "@" command

followed by the number of the desired command set. A command set
that exists on a file is executed by following the "@" command by

the name of the file containing the set of VIEW commands. In

either case the commands are executed as if they were entered

manually in the order saved in the command set.

** Symbolic Name Directory **

The names of global variables which VIEW has stored in its

symbol table may be displayed on the CRT screen with this command.
The format of the command is as follows.

?<pattern>

All variables that match the entered pattern are shown, in

alphabetic order. The wildcard characters "*" and "%" may be used

in the pattern. The "*" means any characters may fit in the

entered position, including none at all. The "%" symbol can

represent exactly one character position.

** Exiting View **

Enter ^Z to stop the program and save the state of the display

pages. "QUIT" exits VIEW freeing all display lines. Since a ^Z
exit reserves a block of VAX memory for storage of page

configuration, the QUIT should be used at the end of a session.



347

** Obtaining Help **

Enter "HELP" to produce a page of command reference text. Any

key stroke will return the display to the standard VIEW page.

VIEW command examples

COMMAND RESULT

PITCH
Places the variable PITCH on the next

available display line using the format

stored in the VIEW symbol table.

LIST(4)/L=6/R=3/F=H.2 Places three elements of the array LIST,

starting with the fourth element, onto

display lines 6 - 8. The data format is

two byte hexadecimal representation.

#4=17.51 Changes the global memory associated with

the variable on line #4 to 17.51. The

format used on the display would need to be
either "F" or "E".

-15
Remove from the display the variable shown
on line #15.

-I/R=3/C
Remove the variables on lines i - 3, moving

the rest of the displayed variables up to

fill the empty lines.

@4 Execute the fourth built in command set.

@[-]COMMANDS.LOG Execute the command set stored in the
specified file.

\[-]COMMANDS.LOG

\

?S*I

Log VIEW commands on the specified file.

Terminate command logging.

Display all global variable names which

start with "S" and end with "i"

?R%%% Display all four letter global variable

names which start with "R".



348

Appendix E - CREATING THE EXECUTABLE IMAGES

The following files are provided with the source code files in

a delivery set. These files are used in the generation of the

display executable images.

BUILD.COM

DDSTAR.COM

DSPFST.COM

DSPHDL.COM

DSPSLW.COM

SECTION.COM
VIEW.COM

Builds all images using following ".COM" files

Linker commands for building DDSTAR.EXE

Linker commands for building DSPFST.EXE

Linker commands for building DSPHDL.EXE
Linker commands for building DSPSLW.EXE

Linker commands for building SECTION.EXE

Linker commands for building VIEW.EXE

DSPFST.OPT

DSPHDL.OPT

DSPSLW.OPT

OPT.OPT
SECTION.OPT

MAPTBL.MAR

PASS.MAR

COMMON.FOR

GBLNAME.DAT

Linker options for DSPFST.EXE

Linker options for DSPHDL.EXE

Linker options for DSPSLW.EXE

Linker options for all executable images
Linker options for SECTION.EXE and VIEW.EXE

Global section mapping table for DSPFST,

DSPHDL, DSPSLW

Global section mapping associated with

VIEW password entries.
Fortran "Block Data" module for BLKMAC

Contains names of all images and global

sections for use by the utilities GLOBAL
and SECTION.

Several command procedures and utility programs exist for
maintenance of the display software. Users must have the following
commands in their LOGIN.COM file.

DEFINE UTL DUB0:[CSC.CJS.CMS]/JOB

@UTL:SET UP

The executable programs have been defined as DCL commands,

therefore they are accessed by simply entering their names

(CMS_SYSTEM, GLOBAL, BLKMAC). The command files are activated by
prefixing "@UTL:" to the file name.

CMS SYSTEM.EXE

GLOBAL.EXE

BLKMAC.EXE

MACALL.COM

FORALL.COM

FTN.COM

Accesses source file delivery sets

Interactive program for global section

linkage

Creates object modules for global data
Assembles macro source files

Compiles Fortran source files

Compiles individual Fortran source file.

The first step in creating the executable images is the



349

generation of VMS object modules from the source code files

described in this document. The VMS Fortran compiler and Macro

assembler are used to create object modules for ".FOR" and ".MAR"

files respectively. Object files for the global data modules,

".INC" files with Fortran COMMON definitions, are generated with

the utility program BLKMAC. One source file, COMMON.FOR, is

provided to BLKMAC as input. The file is a Fortran "Block Data"

module, containing INCLUDE statements for each of the ".INC" files

containing common blocks. Also data initialization statements for

the global variables appear in COMMON.FOR. BLKMAC creates one

object module for each COMMON statement encountered in the input

stream. The file name will have the same name as the Fortran

common block. Two VMS command files were designed to facilitate

the generation of object modules.

@UTL:MACALL

@UTL:FORALL

The first command assembles all VAX macro source files on an

account. The second command both compiles all Fortran files on the

account and automatically executes BLKMAC to compile global data

specification files.

The next step is the creation of global section access files.

These files are used by the VMS linker and by the executable images

to determine the global section access allowed for the individual

executable images. The VMS command GLOBAL SECTIONS (GLOBAL for

short) is executed to interactively select the global section usage

for each of the applications images. This command gets the names

of all the images and global sections from the file GBLNAME.DAT,

which must exist on the current default directory. Information

about read and write access to the various global sections must be

provided for each executable image. This information is used to

generate the ".OPT" files and the VAX macro file MAPTBL.MAR. Also

the user is prompted for VIEW passwords. When all password entries

are complete, information about the global section access

privileges for each password must be provided. The file PASS.MAR

is created from this information. When GLOBAL is finished the two

".MAR" files must be assembled as follows.

GLOBAL

<interactive session>

MAC PASS,MAPTBL

The last step for the creation of the executable images is

Linking. All the required linking is performed by using the build

command file provided.

@BUILD



350

THIS PAGE INTENTIONALLY LEFT BLANK



351

Appendix F - System Global Variables

ITEM D_$_RIPTION UNITS SET BY RESCOM TYP

A429SW

ABACC

ABLOFF

ABROFF

ACC

ACCB

ACCHAT

ACCVLD

ACTCNT

ACWSS

ACWSE

ADCER

ADMG

ADVAL

AEE

AFCSS

AFCSV

AFDTH

AFTLIM

AGC S S

A I LCMD

AI LCMP

AIRPTS

ALB

ALCBA

ALCFLG

ALFAV

ALRTLM

ALT

ALTARM

ALTATT

ALTCOR

ALTDIF

ALTHLD

ALTOMP

ALTSEL

ALTSUM

ALVl

ALV2

ALVDT

ALW

ARINC 429 Xmit Switch p.d.

Along Body Accel fps2

Left Air Bleed OFF discrete Bool

Right Air Bleed OFF discrete Bool

MLS Accelerations (X/Y/Z) fps2

Accel vector from BM Accel's fps2

MLS accel'n estimate vector fps2

ATK/XTK Accelerations valid Bool

# of wpts in Active buffer cnt

ACWS Select Bool

Attitude CWS Engage: FLAGS(4) Bool

ADC Serial bus error counter cnt

Arc Dist Made Good in turn ft

Air Data VALid Bool

AFCS Engaged Bool

AFCS engage Select Bool

Advanced F/C System valid Bool

AFD Throtl hdl pos deg

A/T Position Cmd lower limit deg
AGCS Select Bool

Aileron Command deg

AILCMD - P contribution deg

GPSPKT/OUTIO OUTCOM 1"2

SPDCMD FCCOM R*4

IOFLL INPCOM L*I

IOFLL INPCOM L*I

MLSEX NAVCOM R*4

ACCPRC NAVCOM R*4

CFILT NAVCOM R*4

IOFLL INPCOM L*I

EXECUTE DISNAV 1"2

DISFD FCCOM L*I

MLOG OUTCOM L*I

IOFLL INPCOM 1"2

TGUID NAVCOM R*4

DISFD FCCOM L*I

MLOG OUTCOM L*I

IOFLL INPCOM L*I

IOFLL INPCOM L*I

IOFLL INPCOM R*4

ATHCL FCCOM R*4

IOFLL INPCOM L*I

OUTIOM/PRFLT OUTCOM R*4

LATRL OUTCOM R*4

Selected Airpt def array(2,3) adrs CDUEXC/DEPARR/

+++ EXECUTE/LINK/ROUTE/RTE INTC/XLAT RTE DISNAV 1"4

Oriqin

Airfield: (i,i)

Runway: (2,1)

Body Alpha (angle of attack) deg

2D (Adv Lat Cmd) Bank Angle deg
Advanced Lat Cmd bank FLaG Bool

alpha vane deg

Aileron rate limit deg/10ms
Inert. smoothed baro ALTitude ft

Altitude mode Armed discrete Bool

Altitude Attained discrete Bool

Baro Corrected Altitude (ALT)

(IDDALT - MLSALT)

VCWS Altitude Hold discrete

Altitude to Mode Panel

Alt Hold mode discrete

MSP ALT Summer value

Left Alfa Vane

Right Alfa Vane

Aileron pos

Computed wing alpha

Prov Dest

(1,2)

(2,2)

VERCMD

HVGUID

HVGUID

IOFLL

COMMON

HNAVB

MLOG/MSPLGC

MSPLGC/IOFLL

Dest.

(1,3)

(2,3)

ALWMARG Wing ALFA Margin deg

AMG Angle Made Good deg

AMGI Angle Made Good - Timebox ft

ANTLAT Latitude of LOC/MLS AZ Antenna deg

ft HNSWIT/DATSEL

ft MLSEX

Bool PAFD

p.d. MSPRO

Bool MSPLGC

ft MSPLGC/VERCMD

deg IOFLL

deg IOFLL

deg IOFLL

deg VERCMD
VERCMD

HVGUID

TGUID

EXECUTE

DISNAV R*4

NAVCOM R*4

NAVCOM L*I

INPCOM R*4

OUTCOM R*4

INPCOM R*4

DISNAV L*I

DISNAV L*I

DISNAV R*4

NAVCOM R*4

FCCOM L*I

OUTCOM 1"4

DISNAV L*I

DISNAV R*4

INPCOM R*4

INPCOM R*4

INPCOM R*4

FCCOM R*4

FCCOM R*4

NAVCOM R*4

NAVCOM R*4

NAVCOM R*4



352

ITEM DESCRIPTION UNITS SET BY RESCOM TYP

ANTLON

ANTSEL

APCDG

APCPRM

ASBV

ASTOMP

ASTP

ATCMD

ATDC
ATE

ATFDBK

ATHFF

ATHSEL

ATKINS
ATNAV2

ATNAV3

ATRIM

Longitud of LOC/MLS AZ Antenna deg
MLS Antenna select Tndex ndx

Auto Throtl Pos Cmd deg

Auto throttle rate command dps

ADIRS ADC Bus Valid Bool

Air Speed to Mode Panel p.d.
Auto Stab Trim Pot deg

Auto Throttle Command fps2

AutoThrottle Disengage Bool

Auto Throttle Engage Bool
Auto Throttle FeeDBacK Bool

Gamma cmd to Throt Fwd gain ()

AUTO Throtl options p.d.

IRS Along track accel'n fps2
Auto Tune NAV2 Bool

Auto Tune NAV3 Bool

AFD Aileron Trim pot deg
Bool

Bool
ATT HOLD ACWS/VCWS Att./Radius Hold

ATT--SYNC ACWS/VCWS Roll commanded

EXECUTE

(VIEW)
ATHCL

ATHCL

IOFLL

MSPRO

IOFLL

SPDCMD

IOFLL

ATHCL

IOFLL

COMMON

VIEW

IOFLL

PROGRESS

PROGRESS

IOFLL

LATRL

LATRL

NAVCOM R*4

NAVCOM R*4

OUTCOM R*4

FCCOM R*4
INPCOM L*I

OUTCOM 1"4

INPCOM R*4

FCCOM R*4

INPCOM L*I

OUTCOM L*I

INPCOM L*I
FCCOM R*4

FCCOM 1"2
INPCOM R*4

NAVCOM L*I

NAVCOM L*I

INPCOM R*4

FCCOM L*I

FCCOM L*I

1"2

1"2
L*I

L*I

R*4

R*4

ATUNE2

ATUNE3

AUTOE

AUTOS

AZ

AZ BRG

DME #2 Freq Tune (2X5) p.d. PROGRESS/TUNPTH OUTCOM

DME #3 Freq Tune (2X5) p.d. PROGRESS/TUNXTK OUTCOM

Auto Engage: FLAGS(6) Bool MLOG OUTCOM
AUTO Select Bool DISFD FCCOM

MLS Azimuth beam input deg IOFLL INPCOM

MLS Az antenna phase ctr brg deg RSCON NAVCOM

BACMD
BARSET

BARSFT

BCFLAG

BDCOL

BDWHL

BETAH

BETAV

BIASBA

BMACC

BMACIN

BMAFLG

BRGLS

BSET0

BUTNS

Bank Angle Command deg

Barometric ref Setting in/hg
Baro set in feet ft

Be Careful guid alrt Flg (2D) Bool

AFD Brolley Col pos in

AFD Brolley Whl pos deg

MLS Beta Hat deg

Sideslip [beta] Vane deg
B/M Accel's bias vector fps2

Debiased B/M accel'n vector fps2

B/M Accel'meter input vector fps2

B/M Accel'meter (in use) Flag Bool

Brg to LOC shack deg

Std Atmosphere press. (29.92)in_hg
Overlay of MSP buttons Bool(8)

LATCMD FCCOM R*4
CDUEXC DISNAV R*4

CDUEXC NAVCOM R*4

LATCMD FCCOM L*I

IOFLL INPCOM R*4

IOFLL INPCOM R*4

DSPOT DISNAV R*4

IOFLL INPCOM R*4

MLSEX NAVCOM R*4

ACCPRC NAVCOM R*4

INIOM INPCOM R*4

MLSEX NAVCOM L*I

HNAVSL BCKCOM R*4

(constant) CON R*4

MSPLGC FCCOM I_

CAS Calibrated Airspeed kts

CDME2 Computed DME2 range nm

CDME3 Computed DME3 range nm
CDUCNT Current byte cnt in CDU o/p buffer

CDU INIT Initialize CDU on start up Bool

CDU MODE Stages of msg composition mode ()
CFRUN MLS CFILT Run counter cnt

CFXCC MLS Exceednce (Ex) error cntrs cnt

CG A/C Center of Gravity %MAC

IOFLL INPCOM R*4

HNAVSL NAVCOM R*4

HNAVSL NAVCOM R*4
CDUEXC CDUCOM 1"2

SLOW/CDUEXC CDUCOM L*I

CDUEXC/LINK CDUCOM 1"2
MLSEX NAVCOM 1"2

MLSEX NAVCOM 1"2

PFINIT DISNAV R*4



353

ITE_._M D$SCRIPTION UNITS SET BY RESCOM TYP

CINDEX

CLAT

CLON

CMPALT

CMPFPA

CMPIAS

CMPMSD

CMPTKA

COLDST

PGA Cost Index

Cos(latitude)

Cos(longitude)

ALT knob input

FPA knob input

IAS knob input

CMP Discrete inputs

TKA knob input

System startup (Cold start)
+++

() PFINIT

() HNAVFS

() HNAVFS

() IOFLL

() IOFLL

() IOFLL

() IOFLL

() IOFLL

Bool FMFAST/FCFAST/

COMPASS Ship's Mag Heading deg

COSAZB Cos(AZ_BRG) ()

COSRH Cos(RWYHDG) ()

COSTH Cos(HDGTRU) ()

CRESET Comp Reset select Bool

CROLL Cos(ROLL) ()

CRSET Comp RESET discrete

CRZALT Selected Cruise Altitude ft

CTHET Cos(PITCH) (theta) ()

CTKE cos(TKE) ()

CTRF Plan mode map center defined Bool

CVIU TO CVIU TimeOut count cnt

CVOR2 Computed VOR2 bearing deg

CDUCOM R*4

NAVCOM R*4

NAVCOM R*4

INPCOM 1"2

INPCOM 1"2

INPCOM 1"2

INPCOM 1"2

INPCOM 1"2

SLOW NAVCOM

IOFLL INPCOM

RSCON NAVCOM

EXECUTE DISNAV

HNAVFS NAVCOM

IOFLL INPCOM

ACCPRC NAVCOM

Bool DISFD/MLOG/ATHCL FCCOM

EXECUTE/RTE CDUCOM

ACCPRC NAVCOM

HVGUID/LATCMD NAVCOM

CDUEXC CDUCOM

IOFLL INPCOM

HNAVSL NAVCOM

L*I

R*4

R*4

R*4

R*4

L*I

R*4

L*I

R*4

R*4

R*4

L*I

1"2

R*4

D2D

D3D

D4D

DACWS

DALSEL

DASCAL

DECMD

DECRB

DELAY

DELCAS

DCOL

DCOLF

DECMD

DECMQ

DECRB

DELALT

DELTAT

DELTH

DELTKA

DELTY

DEPOS

DFPSEL

DFTANG

DFVWS

DFVWD

DIASEL

DIFMOD

MSP HORPTH Select pressed Bool

MSP VERPTH Select pressed Bool

MSP TIMPTH Select pressed Bool

MSP ACWS/VCWS/AUTO/LAND prs'd Bool

MSP Alt Select pressed Bool

DAS Calibration flag Bool

Elevator Command deg

Decrab Engage: FLAGS(8) Bool

Mode engage Delay counter ()

AutoThrottle CAS error kts

Column position input in

Gained & Filtrd DCOL in

Delta elevator command (total) deg

DECMD - Q contribution deg

Decrab mode discrete Bool

Altitude Select error ft

Major frame cycle time (.05) sec

MLS Altitude Deviation (LAND) ft

Track Angle Error select deg

Delta Y (MLS) ft

Elevator servo position deg

MSP FPA Select pressed Bool

Selected drift angle deg

DFVLR wind model (speed) kts

DFVLR wind model (dir) deg

MSP IAS Select pressed Bool

GPS Differential Mode Bool

MSPLGC FCCOM

MSPLGC FCCOM

MSPLGC FCCOM

MSPLGC FCCOM

MSPLGC FCCOM

(VIEW) RECCOM

OUTIOM/PRFLT OUTCOM

MLOG OUTCOM

MLOG FCCOM

SPDCMD FCCOM

IOFLL INPCOM

ELEVP FCCOM

OUTIOM 0UTCOM

ELEVP OUTCOM

MLOG OUTCOM

VERCMD FCCOM

(constant) CON

VERCMD FCCOM

LATCMD FCCOM

LATCMD FCCOM

IOFLL INPCOM

MSPLGC FCCOM

HNAVFS DISNAV

BLOW BCKCOM

BLOW BCKCOM

MSPLGC FCCOM

IOFLL INPCOM

L*I

L*I

L*I

L*I

L*I

L*2

R*4

L*I

1"2

R*4

R*4

R*4

R*4

R*4

L*I

R*4

R*4

R*4

R*4

R*4

R*4

L*I

R*4

R*4

R*4

L*I

L*I



354

ITEM DEStRUCT;ON UNITS SET BY RE$COM TYP

DISCW1 Simplex/triplex discrete inpt p.d. IOFLL

DISCW2 Simplex/triplex discrete inpt p.d. IOFLL

DISCW3 Simplex/triplex discrete inpt p.d. IOFLL

DISOUT PACKED DISCRETE for output p.d. DASOT

DISPST Displays Status word p.d. IOFLL

DSPST2 Displays Status word 2 () IOFLL

DSTOMP Lamp Outputs to Mode Panel p.d. MSPRO
DLALTM HYBALT - MLSALT ft GPSPRC

DLATFT Feet per degree of latitude fpd ERAD
DLLATA GPSLAT - IDDLAT ft GPSPRC

DLLATM HYBLAT - MLSLAT ft GPSPRC

DLLONA GPSLON - IDDLON ft GPSPRC

DLLONM HYBLON - MLSLON ft GPSPRC

DLONFT Feet per degree of longitude fpd ERAD

DLPSI Yaw relative to runway deg DATSEL/NAVIG

DLTALT HYBALT - IDDALT ft GPSPRC

DLTLAT HYBLAT - IDDLAT ft GPSPRC

DLTLON HYBLON - IDDLON ft GPSPRC

DME2FQ DME #2 Freq selected (2X5) IOFLL
DME2VD DME #2 Valid discrete Bool IOFLL

DME3FQ DME #3 Freq selected (2X5) IOFLL

DME3VD DME #3 Valid discrete Bool OFLL

DMG Separation reference Distance ft HVGUID/TGUID

DPE Delta Position East nm HNAVSL/HNAVB

DPERRF DPN/DPE too large flag Bool HNAVSL

DPN Delta Position North nm HNAVSL/HNAVB

DROLL ROLL for sky pointer deg LATRL

DRPOS Rudder servo Pos deg IOFLL

DSBV DTU Serial Bus Valid (MLS) Bool IOFLL

DSPLF Failure DiSPLayed array(9) Bool MLOG/ATHCL

DSRTK Desired Track (2D) deg HVGUID

DSTAT Discrete Status array(18) p.d. DISFD

DTC IN Raw data input bfr (frm DATAC) -- HDL

INPCOM 1"2

INPCOM 1"2

INPCOM 1"2

RECCOM 1"2

INPCOM 1"2

INPCOM 1"2

OUTCOM 1"4

RECCOM R*4

DISNAV R*4

RECCOM R*4

RECCOM R*4

RECCOM R*4

RECCOM R*4

DISNAV R*4

FCCOM R*4

RECCOM R*4

RECCOM R*4

RECCOM R*4

INPCOM 1"2

INPCOM L*I

INPCOM 1"2

INPCOM L*I

NAVCOM R*4

NAVCOM R*4

BCKCOM L*I

NAVCOM R*4

DISNAV R*4

INPCOM R*4

INPCOM L*I

FCCOM L*I

DISNAV R*4

FCCOM 1"2

DTCCOM 1"2

1"2

1"2

1"2

NAVCOM R*4

FCCOM L*I

DISNAV R*4

CON R*4

NAVCOM R*4

NAVCOM R*4

NAVCOM R*4

FCCOM R*4

FCCOM R*4

DTC NRDY DATAC NOt Ready count cnt IOFLL INPCOM

DTC OUT Raw data output bfr (to DATAC) -- HDL/OUTIOM/OUTIO DTCCOM
DTC TO DATAC TimeOut count cnt IOFLL INPCOM

m

DTG Abeam pt Dist to _TO' wpt ft HVGUID

DTKSEL MSP TKA Select pressed Bool MSPLGC
DTOGO Distance to mid-turn ft HVGUID

DTOR Conversion factor (pi/180) rpd (constant)

DTOTL Progress Distance of A/P ft HVGUID

DVE Delta Vel. East (IDD filter) kts HNAVFS/HNAVB

DVN Delta Vel. North (IDD filter) kts HNAVFS/HNAVB

DWHL Selected Whl input ibs/deg MLOG
DZNE DCOL Dead zone value in MLOG

ELI MLS Elevation beam input deg IOFLL

EL1 DEP MLS Elevation antenna bias deg RSCON (MLSEX)

EL2F Update IDD L/L on MLS select Bool MLSEX

ELLIP Ellipticity of Earth (3.352811E-3) (constant)

EPRI Engine #I Pressure Ratio () IOFLL

INPCOM R*4

NAVCOM R*4

NAVCOM L*I

CON R*4

INPCOM R*4



355

ITEM

EPR2

EPRFLG

ERESET

ERINT

ERSET

ESQ

ETAFT

ETAH

ETAVL

EXHOLD

EX

DESCRIPTION UNITS

Engine #2 Pressure Ratio ()

EPR limit selection flag ndx

Error Reset select Bool

integral(K GAMD + K GAMER) deg

Error RESET discrete Bool

Eccentricity Squared(6.6943801E-3)

Gain Progrmd LOCDEV ft

MLS Eta Hat deg

Limited ETA (LOCDEV) deg

Arm Exit Hold pattern Bool

CFILT Error terms - EX, EY,EZ ft

SET BY

IOFLL

EPRLIM

IOFLL

ELEVP

DISFD/MLOG

(constant)

MLOG

DSPOT

MLOG

HOLD

MLSEX

RESCOM TYP

INPCOM R*4

CDUCOM 1"2

INPCOM L*I

FCCOM R*4

FCCOM L*I

CON R*4

FCCOM R*4

DISNAV R*4

FCCOM R*4

CDUCOM L*I

NAVCOM R*4

FOG

F2G

F3G

FADERS

FAIL2

FALST

FCCNT

FCOL

FCOVER

FCFLGS

FEXPI6

FFDE

DME #3 Fail flags p.d.

DME #2 Fail flags p.d.

VOR #2 Fail flags p.d.

FADER Switch Bool

Second FAIL array Bool

System Test Panel switch input ndx

Exception Count for FCFAST cnt

FFD Column force input ibs

Overflow Count for FCFAST cnt

Flight Ctrls Flags to DSP p.d.

+++

KTAU for VS(PHI) Filter ()

Fwd Flt Deck Engage: FLAGS(2) Bool

FFDNAV2 FFD has Nay2 tuning

FFDS

FIDENT

FLADM

FLAGS

FLAGWD

FLAP

FLARE

FLPNDX

FLPPF

FLPPOS

FLRM

FMCNT

FMOVER

FPA

FPASEL

Bool

Fwd Flight Deck Select Bool

Failure ID Table (array of 7) ndx

Air Data Mode Flag Bool

O'lay (18 bytes) of F/C modes Bool

Overlay (9 words) of 'FLAGS' ()

FFD Flap handle pos deg

Flare Engage: FLAGS(9) Bool

Index to Flap table ndx

Filtered FLPPOS deg

Flap Position deg

Radio Mode Navigation flag Bool

Exception Count for FMFAST cnt
Overflow Count for FMFAST cnt

3D segment Flight Path Angle deg
FPA Hold mode discrete Bool

HNAVSL

HNAVSL

HNAVSL

VERCMD

F2CMP/MLSEX

IOFLL

FCFAST

IOFLL

FCFAST

GPSPRC/MLOG/

BCKCOM 1"2

BCKCOM 1"2

BCKCOM 1"2

OUTCOM L*I

FCCOM L*I

INPCOM 1"2

OUTCOM 1"4

INPCOM R*4

OUTCOM 1"4

IOFLL DISNAV

COMMON

MLOG

IOFLL

IOFLL

FDSTR

HNAVFS

MLOG

MLOG

IOFLL

MLOG/ELEVP

IOFLL

VERCMD

IOFLL

HNAVFS

FMFAST

FMFAST

HVGUID

MSPLGC

FCCOM

OUTCOM

INPCOM

INPCOM

FCCOM

NAVCOM

OUTCOM

OUTCOM

INPCOM

OUTCOM

INPCOM

FCCOM

INPCOM

NAVCOM

OUTCOM

OUTCOM

NAVCOM

DISNAV

FPASUM

FPTOMP

FRAME

FRAMES

FSBV

FSIDX

FSTCNT

FTFQ

FTONM

FWDLIM

MSP FPA Summer value

Flight Path Angleto Mode Panelp.d.

Running count of i0 msec int cnt

Running count of 50 msec int cnt

RFDIU (Fuel flow) Ser Bus Vld Bool

Fail Status Index pointer ndx

Fast loop time estimate msec

Filtered Tot Fuel Qty ibs

Conversion factor (1/6076.1155)

A/T Position Cmd Upper Limit deg

deg MSPLGC/VERCMD

MSPRO

IOFLL

IOFLL

IOFLL

F2CMP/PANEL

FCFAST

IOFLL

(constant)

COMMON

DISNAV

OUTCOM

INPCOM

INPCOM

INPCOM

FCCOM

FCCOM

INPCOM

CON

FCCOM

1"2

R*4

L*I

L*I

L*I

1"2

L*I

L*I

1"2

R*4

L*I

1"2

R*4

R*4

L*I

1"4

1"4

R*4

L*I

R*4

1"4

1"4

1"4

L*I

1"2

R*4

R*4

R*4

R*4



356

ITE____M DESQR_PTION UNITS SET BY RESCOM TYP

FWHL FFD Wheel Force ibs IOFLL INPCOM _4

GAE

GAEPR

GAMC

GAMCMD

GAMD

GAMER

GAMLIM

GAMMA

GAS

GDTIME

GEAR

GPBTAV

GPGSDV

GPHDOP

GPINIT

GPLND

GPLNDV

GPLOCD

GPNAV

GPNAVV

GPSBTA

GPSETA

GPSHDT

GPSLAT

GPSLON

GPSMOD

GPSSEL

GPSSTI

GPSST2

GPSVE

GPSVLD

GPSVN

Go Around Enable Bool

Go Around EPR ()

Commanded Gamma value deg

Gamma Rate command (Althold) dps

Gamma Dot dps

(PGAMC - (THETA or GAMMA)) deg

Gamma/Pitch command limit deg

Flight path angle deg

Go Around Select (NOT) Bool

Buffer send timer

+++

Nose Gear down Bool

GPS G/S (beta) Valid Bool

Gain Program'd G/S Deviation ft

GPS Hor Dilution Of Precision ()

GPS land comp. INITialized B00L

GPS Land select Bool

GPS Land valid Bool

Gain Program'd LOC Deviation deg

GPS Navigation select Bool

GPS NAVigation Valid Bool

GPS derived BETAH deg

GPS derived ETAH deg

GPS Hdot fps

Absolute GPS Latitude deg

Absolute GPS Longitude deg

GPS sensor Mode ndx

GPS Select word ndx

GPS Status word 1 p.d.

GPS Status word 2 p.d.

GPS VE kts

Hybrid GPS signals valid Bool

GPS VN kts

GPS OUT Raw GPS output data (to DATAC) --

GPVDOP GPS Vert Dilution of Precision ()

GRAV0 Nom acc of gravity (32.1739) fps2

GRD on GRounD Bool

GRSSTI GP IRS Status word I bits

GRSSTS GP IRS Status word 2 bits

GRWGT A/C initial Gross Weight ibs

MLOG OUTCOM L*I

EPRLMT CDUCOM R*4

ELEVP/VERCMD DISNAV R*4

VERCMD FCCOM R*4

ELEVP FCCOM R*4

ELEVP FCCOM R*4

VERCMD FCCOM R*4

HNAVFS/DATSEL DISNAV R*4

IOFLL INPCOM L*I

sec AIRWAY/CDUFST/

EXECUTE/LEGS BCKCOM 1"4

IOFLL INPCOM L*I

GPSPRC NAVCOM L*I

MLOG FCCOM R*4

IOFLL INPCOM R*4

GPSPRC NAVCOM L*I

GPSPG NAVCOM L*I

GPSPRC NAVCOM L*I

MLOG FCCOM R*4

GPSPG NAVCOM L*I

GPSPRC NAVCOM L*I

GPSPRC NAVCOM R*4

GPSPRC NAVCOM R*4

IOFLL INPCOM R*4

IOFLL INPCOM R*4

IOFLL INPCOM R*4

GPSPRC NAVCOM 1"2

GPSPRC DISNAV 1"2

IOFLL INPCOM 1"2

IOFLL INPCOM 1"2

IOFLL INPCOM R*4

IOFLL INPCOM L*I

IOFLL INPCOM R*4

OUTIO DTCCOM 1"2

IOFLL INPCOM R*4

(constant) CON R*4

ELEVP FCCOM L*I

IOFLL INPCOM 1"2

IOFLL INPCOM 1"2

PFINIT DISNAV R*4

DISNAV R*4

DISNAV R*4

OUTCOM L*I

FCCOM R*4

CDUCOM R*4

OUTCOM L*I

DISNAV R*4

NAVCOM R*4

INPCOM R*4

GS

GSA

GSARM

GSDEV

GSE

GSENG

GSFPS

GSFPS2

GSINS

Ground Speed kts HNAVFS/DATSEL

Glide Slope Angle deg EXECUTE/MLOG

Glide Slope Armed: FLAGS(14) Bool MLOG

Glide slope deviation ~deg MLOG

4-D Guidance Ground Speed Errorfps HVGUID

Glide Slope Engaged:FLAGS(15) Bool MLOG/ELEVP

Ground Speed fps HNAVFS/DATSEL

Ground Speed**2 f2/s2 HNAVFS/DATSEL

IRS ground speed kts IOFLL



357

ITEM DESCRIPTION UNITS SET BY RESCOM TYP

GSTRK

GSVLD

GUID2D

GUID3D

GUID4D

Glide Slope Track: FLAGS(17) Bool MLOG/ELEVP OUTCOM L*I

ILS G/S Rcvr Valid Bool DISFD FCCOM L*I

2D Guidance possible flag Bool CDUFST/DATSEL/

+++ EXECUTE/HVGUID/NAVIG/ROUTE DISNAV L*I

3D Guidance possible flag Bool CDUFST/EXECUTE/

+++ HVGUID/NAVIG/ROUTE DISNAV L*I

4D guidance possible flag Bool CDUFST/EXECUTE/
+++ HVGUID/NAVIG/ROUTE/TGUID DISNAV L*I

HBARO Baro altitude

HBECTR Counts of ALT-HBARO > 50 ft

HDCF HDOT Complementary filt'd
+++

HDD Selected vertical accel'n

HDDFEXP KTAU for HDDF Filter

HDDINS IRS vertical acceleration

HDDOT Debiased HDD from ALT filter

HDGTRU Selected true A/C heading

HDILS Vert velocity from HRAD & HDD fps

HDLCNT Exception Count for HDL cnt

HDOT HDOT Complementary filt'd fps

HDOTB Altitude rate fps

HDTC Altitude rate command (3D) fps

HER Vertical Path errror ft

HGPIP GPIP Height above MLS plane ft

HLD2D New PTR2D after hold ptrn rmvd ndx

HLDTRK TKASUM for TRKHLD mode deg

HLD PTR Active Hold Waypoint Pointer

HLD--WPT Name of Holding ptrn fix Wpt

ft IOFLL INPCOM R*4

cts HNAVB NAVCOM 1"2

fps HNSWIT/DATSEL/

NAVIG DISNAV R*4

fps2 HNAVFS/DATSEL NAVCOM R*4

() COMMON FCCOM R*4

fps2 INIOM INPCOM R*4

fps2 HNAVB/NAVIG NAVCOM R*4

deg HNAVFS/DATSEL DISNAV R*4

ELEVP FCCOM R*4

HDL OUTCOM 1"4

HNAVB NAVCOM R*4

IOFLL INPCOM R*4

HVGUID DISNAV R*4

HVGUID DISNAV R*4

MLSEX NAVCOM R*4

EXECUTE/HOLD CDUCOM 1"2

LATCMD/LATRL FCCOM R*4

ndx EXECUTE/ROUTE CDUCOM 1"2

char EXECUTE�HOLD�

HOLD

HOLDM

HORARM

HORBLU

HORPTH

HRAD

HRV

HRSS

HTDZ

HYBALT

HYBHDT

HYBLAT

HYBLON

HYBVE

HYBVN

H TDC

IASARM

IASREF

IASSEL

IASSUM

+++

HOLD Mode select discrete Bool

HOLD Mode engaged discrete Bool

Hor Path mode Armed discrete Bool

HOR Path blue light Bool

HOR Path mode engaged dscrte Bool

Corrected radar altitude ft

Radio Altitude Valid Bool

System time in hours/mins bcd

Selected (MLS/HRAD) alt (AGL) ft

Hybrid GPS/IRS Altitude ft

Hybrid GPS/IRS Altitude rate fps

Hybrid GPS/IRS Latitude deg

Hybrid GPS/IRS Longitude deg

Hybrid GPS/IRS East velocity kts

Hybrid GPS/IRS North velocity kts

Ht of Az plane above rwy @ GPIP ft

LEGS/ROUTE CDUCOM C'5

IOFLL INPCOM L*I

MLOG OUTCOM L*I

MSPLGC DISNAV L*I

MSPLGC DISNAV L*I

MSPLGC DISNAV L*I

DATSEL NAVCOM R*4

DISFD FCCOM L*I

IOFLL INPCOM 1"2

MLOG FCCOM R*4

IOFLL INPCOM R*4

IOFLL INPCOM R*4

IOFLL INPCOM R*8

IOFLL INPCOM R*8

IOFLL INPCOM R*4

IOFLL INPCOM R*4

RSCON (MLSEX) NAVCOM _4

IAS Armed mode discrete

IAS Ref (min) airspeed

IAS SELect

MSP IAS Summer value

Bool MSPLGC DISNAV L*I

kts PFINIT NAVCOM R*4

Bool MSPLGC DISNAV L*I

kts MSPLGC/SPDCMD DISNAV R*4



358

ITEM DESCRIPTION UNITS

IATTV

IC

ICM

IDDALT

IDDATK

IDDGS

IDDLAT

IDDLNC

IDDLNF

IDDLON

IDDLTC

IDDLTF

IDDXTK

ILDHIG

ILDPRF

ILGRNG

ILSZON

INAVV

INSST

IPL NR

IRSALT

IRSER

IRS ATTitude Valid Bool

IC Mode select discrete Bool

IC Mode engaged discrete Bool

Comp Filtered (HBARO/HDD) Alt ft

Selected Along Track Accel fps2
GS from INS data kts

Inertial-Dual-DME Latitude deg

MSW of Integer IDDLON deg

LSW (LSB Approx 4 ft) deg

Inertial-Dual-DME Longitude deg

MSW of Integer IDDLAT deg

LSW (LSB = 180"2"*-24) deg

Selected Across Track Accel fps2

Use hi gain for ILD/ILG Bool

Use ILD vs ILG if both valid Bool

Use cptd rnge vs HRAD for ILG Bool

Within ILS (guidance) Zone

IRS NAVigation Valid

Ignore Display toggle fail

I/P Link Not Rdy count
IRS corrected altitude

IRS Serial bus error counter

IRSHDOT IRS vertical velocity
IRSSTI IRS Status word 1

IRSST2 IRS Status word 2

IRSWD WD from ADIRS

IRSWS WS from ADIRS

ISBV ADIRS IRS Bus Valid

Bool

Bool

Bool

cnt

ft

cnt

fps

p.d.

p.d.

deg

kts

Bool

JUMP Test flg for RNAV/MLS trnsxn Bool

KIP

K2P

KAILG

KAILP

KAILT

KALFA

KATRM

KAT 08

KAT16

KCAS

KCMR

KCTOT

KDCALF

KDCOL

KDCRB

KDECP

KDECT

KDWHL

KHCAS

KHD

RNAV filter position gain ()

RNAV filter velocity gain ()

Gain on AILCMD (nom=l.) ()

Aileron pulse magnitude: 102.4*deg

Aileron pulse duration : 20*sec

Vert gain as f(ALFA) ()

KTAU for Ail Trim (SYNCL) ()

Fwd loop gain for Autothrottle ()

Parallel loop gain for Autothr ()

Hor/Ver Path gain as f(CAS) ()

TC for CAS/MACH Filter ()

Ratio of CAS to TAS ()

Speed gain as f(ALFA) ()

Gain on SAC Col input ()

VCWS Aileron Crossfeed gain ()

Elevator pulse magnitude:102.4*deg

Elevator pulse duration : 20*sec

Gain on SAC Whl input ()

Overspeed degain for gamma cmd ()

Vert. Path Vel. error gain ()

SET BY

DISFD

IOFLL

MLOG

HNAVB

HNAVSL/NAVIG

HNAVFS

HNAVB

DASOT

DASOT

HNAVB

DASOT

DASOT

HNAVSL/NAVIG

VIEW

VIEW

VIEW

HNAVSL

DISFD

VIEW

IOFLL

IOFLL

IOFLL

IOFLL

IOFLL

IOFLL

IOFLL

IOFLL

IOFLL

HNAVB/VIEW

HNAVSL

HNAVSL

LATRL

(VIEW)

(VIEW)

VERCMD

COMMON

COMMON

COMMON

LATCMD

COMMON

SPDCMD

VERCMD

COMMON

COMMON

(VIEW)

(VIEW)

COMMON

VERCMD

VERCMD/COMMON

RESCOM

FCCOM

INPCOM

OUTC0M

NAVCOM

NAVCOM

NAVCOM

NAVCOM

RECCOM

RECCOM

NAVCOM

RECCOM

RECCOM

NAVCOM

BCKCOM

NAVCOM

NAVCOM

DISNAV

FCCOM

FCCOM

INPCOM

INPCOM

INPCOM

INPCOM

INPCOM

INPCOM

INPCOM

INPCOM

INPCOM

NAVCOM

NAVCOM

NAVCOM

OUTCOM

OUTCOM

OUTCOM

FCCOM

FCCOM

FCCOM

FCCOM

FCCOM

FCCOM

FCCOM

FCCOM

FCCOM

FCCOM

OUTCOM

OUTCOM

FCCOM

FCCOM

FCCOM

TYP

L*I

L*I

L*I

R*4

R*4

R*4

R*8

1"2

1"2

R*8

1"2

1"2

R*4

L*I

L*I

L*I

L*I

L*I

1"2

1"2

R*4

1"2

R*4

1"2

1"2

R*4

R*I

L*I

L*I

R*4

R*4

R*4

R*4

R*4

R*4

R*4

R*4

R*4

R*4

R*4

R*4

R*4

R*4

R*4

R*4

R*4

R*4

R*4

R*4



359

ITEM

KLRG
KP
KPDTC
KPLIM
KQ
KRTRM
KTOP5S
KTISEC
KTIP5S
KT2SEC
KT3SEC
KT4SEC
KT5SEC
KTAUPF
KTDCRB
KTDROL
KTKREL
KTOFPS
KTP25S
KTPFL
KV
KVCAS
KWHLF4

LABFLG
LAMP
LANDS
LANDA
LANDE
LANDR
LAT

DESCRIPTION UNITS

SAC Left/Right gain

Gain on P

PDTCMD gain

Upper Limit on KP

Gain on Q

KTAU for Rud Trim

e**-(dt/Tau) where Tau = .5

e**- (dt/Tau)

e**- (dr/Tau)

e**- (dt/Tau)

e**- (dt/Tau)

e**- (dr/Tau)

where Tau = i.

where Tau = 1.5

where Tau = 2.

where Tau = 3.

where Tau = 4.

e**-(dt/Tau) where Tau = 5.

TC (KTAU) for PFI (roll rate)

VCWS Aileron Crossfeed KTAU

KTAU for DROLL

()
()
()
()
()
()
()
()
()
()
()
()
()
()
()
()

TC (KTAU) for TKREL (0.2 sec) ()

Kts to fps Conv factor (1.6878099)

e**-(dt/Tau) where Tau = .25 ()

TC for PFI (0.05 sec) ()

Airspeed gain ()

Speed gain on ATCMD ()

CWS Whl Feed fwd gain ()

Operating in the Hot Bench

Lamp Test Select

LAND Select

Land Armed:

Land Engage:

Land Ready:

SET BY RESCOM TY__[P

Selected Latitude

COMMON FCCOM R*4

LATRL OUTCOM R*4

COMMON FCCOM R*4

COMMON FCCOM R*4

ELEVP OUTCOM R*4

COMMON FCCOM R*4

(constant) CON R*4

(constant) CON R*4

(constant) CON R*4

(constant) CON R*4

(constant) CON R*4

(constant) CON R*4

(constant) CON R*4

COMMON FCCOM R*4

COMMON FCCOM R*4

COMMON FCCOM R*4

(constant) FCCOM R*4

(constant) CON R*4

(constant) CON R*4

LATRL OUTCOM R*4

VERCMD FCCOM R*4

SPDCMD FCCOM R*4

COMMON FCCOM R*4

Bool HNAVSL DISNAV L*I

Bool DISFD FCCOM L*I

Bool DISFD FCCOM L*I

FLAGS(II) Bool MLOG OUTCOM L*I

FLAGS(7) Bool MLOG OUTCOM L*I

FLAGS(16) Bool MLOG OUTCOM L*I

deg HNSWIT DISNAV R*4

LATCEN
+++

LATDIF (IDDLAT - MLSLAT)

LATINS IRS latitude

LAT MLS Latitude of MLS Az antenna

LATSEL LAT Steer options

LATSTR

LBS

LFCFLG

LHDC

LIGHTS

LLINIT

LMB

LNDBLU

LNDCTR

LOCA

LOCCMD

North up map Center - Latitude degAIRWAY/CDUFST/
LEGS/NAVPG DISNAV R*4

deg MLSEX NAVCOM R*4

deg IOFLL INPCOM R*4

deg RSCON NAVCOM R*4

p.d. VIEW FCCOM 1"2

deg LATCMD FCCOM R*4

Bool LATCMD/MLOG FCCOM L*I
Lateral Steering signal

Lateral Beam Sensed flag

Scratch copy of FCFLGS
+++

HDOT Command Limit

STP Lamp control word

Lat/Lon Initialized flag

+++

RWY-to-body rotation (3X3)
+++

LAND Mode blue light

p.d. DSPOT/ELEVP/MLOG
SPDCMD/VERCMD FCCOM 1"2

fps VERCMD FCCOM R*4

bits F2CMP/FDSTR/PANEL FCCOM 1"2

Bool HNAVFS/INITUP/
NAVIG NAVCOM L*I

matrix ACCPRC/GPSPRC/

Bool

LANDS Delay Counter ()

Localizer Armed: FLAGS(12) Bool

Localizer Steering signal deg

MA_E_M R*4

MLOG DISNAV L*I

MLOG FCCOM 1"2

MLOG OUTCOM L*I

LATCMD FCCOM R*4



360

ITE_____M DESCRIPTION UNITS SET BY RESCOM TYP

LOCDEV

LOCE

LOCVL

LOCFS

LOCVLD

LON

LONCEN

MLOG FCCOM R*4

MLOG/LATCMD OUTCOM L*I

MLOG/LATCMD FCCOM R*4

DISFD FCCOM L*I

DISFD FCCOM L*I

HNSWIT DISNAV R*4

deg AIRWAY/CDUFST/

Selected Loc Dev (ILS/MLS/GPS)~deg

Localizer Engaged: FLAGS(13) Bool

ETA/DELTY Variable Limit ()

Localizer Freq Selected Bool

Localizer Valid Bool

Selected Longitude deg

North up map Center - LON deg
+++

(IDDLON - MLSLON)

IRS longitude

LONDIF deg

LONINS deg

LONMLS Longitude of MLS Az antenna deg

LEGS/NAVPG DISNAV R*4

MLSEX NAVCOM R*4

IOFLL INPCOM R*4

RSCON NAVCOM R*4

MACH

MAGHDG

MAGVAR

MANEL

MAPUPD

MAXF

MAXSPD

MCLEPR

MCONF

MCREPR

MCTEPR

MDME2

MDME3

MDWARN

MFRAME

MINS

MACH number ()

IRS Magnetic Heading deg

Magnetic variation deg

Manual Electric: FLAGS(3) Bool

Map Update request Bool

Max Frame count @ end of FCFAST ()

Max CAS/MACH (2 items) kts/mach

EPR Limit for max Climb Thrust ()

MLS Configuration word bits

EPR Limit for max Cruise Thrust ()

EPR Limit for max Cont. Thrust ()

Measured DME #2 distance nm

Measured DME #3 distance nm

Mode Reversion Warning Bool

Present Minor Frame (0 - 4) cnt

System time in secs/tenths bcd
MINSATH Minimum Satellites for GPS nay cnt

MINSATV Minimum Sat's for Vert guid

MLO

MLSALT

MLSC

MLSER

MLSLAT

MLSLON

MLSM

MLSMOD

MLSRAW

MLSSLI

MLSSV

MLSSVC

MLSVAL

MLSVLD

MNAVTY

Bool

Maj Logic O/P from DISFD p.d.

MLS derived Altitude (MSL) ft

MLS Compute flag Bool

MLS Serial bus error counter cnt

MLS derived Latitude deg

MLS derived Longitude deg

MLS Mode selected (F/C) Bool

MLS Mode selected (Nav) Bool

MLS signal input ary: DME,AZ,EL --

MLS Select switch (Nay pallet)Bool

MLS Signal Valid array (4) Bool

MLS Signal Valid Ctrs(R, Az,EI) cnt
MLS solution Vali Bool

MLS Valid (MLSVAL .and. RUNM) Bool

Nav type for mode word p.d.

IOFLL INPCOM R*4

IOFLL INPCOM R*4

ERAD/NAVIG DISNAV R*4

MLOG OUTCOM L*I

HNAVSL DISNAV L*I

FCFAST FCCOM 1"2

VIEW FCCOM R*4

EPRLMT CDUCOM R*4

VIEW NAVCOM 1"2

EPRLMT CDUCOM R*4

EPRLMT CDUCOM R*4

IOFLL INPCOM R*4

IOFLL INPCOM R*4

MSPLGC OUTCOM L*I

IOFLL INPCOM 1"2

IOFLL INPC0M 1"2

COMMON/VIEW NAVCOM 1"2

(VIEW) NAVCOM 1"2

DISFD FCCOM 1"2

HNAVML DISNAV R*4

MLSEX/HNAVB NAVCOM L*I

IOFLL INPCOM 1"2

HNAVML DISNAV R*4

HNAVML DISNAV R*4

MLOG FCCOM L*I

HNAVFS/DATSEL OUTCOM L*I

IOFLL INPCOM R*4

IOFLL INPC0M L*I

IOFLL/NAVIG INPCOM L*I

MLSEX NAVCOM 1"2

MLSEX NAVCOM L*I

HNAVFS OUTCOM L*I

HNAVSL DISNAV 1"2

1"2

1"2

1"2

1"2

L*I

1"2

MODCNT

MODE2

MODEX

MSBUF

MSGST

MSPER

# of wpts in Mod buf cntEXECUTE/XLAT RTE DISNAV

Prev iteration value of MODEX ndx MLOG FCCOM

Flight MODE index (see FCCOM) ndx MLOG/ELEVP FCCOM

Format'd Failure Msg (38 byteB$CII FMTMG FCCOM

Status of next Message to STP Bool FMTMG FCCOM

MSP Serial bus error counter cnt IOFLL INPCOM



361

ITE.___.M.M DESCRIPTION UNITS SET BY RESCOM TYP

MSWI

MSW6

MSWIT

MSIOML

MS50ML

MURWY

MVINS

MVOR2

MXEPR

MXHDOP

MXVDOP

MLS Switch 1 Boo1

MLS Switch 6 BOO1

STP Mode Switch position ndx

# Missed I0 Msec int cnt

# Missed 50 Msec int cnt

Origin Rwy friction coef ()

Computed magvar from ADIRS deg

Measured VOR #2 bearing deg

MaX permissable EPR ()

Max allowable HDOP for GPS navBool

Max VDOP value for guidance ()

MLOG

MLOG

FDSTR

IOFLL

IOFLL

TKOFF

BLOW

IOFLL

EPRLMT

COMMON/VIEW

(VIEW)

FCCOM L*I

FCCOM L*I

FCCOM 1"2

INPCOM 1"2

INPCOM 1"2

DISNAV R*4

BCKCOM R*4

INPCOM R*4

DISNAV R*4

NAVCOM R*4

NAVCOM R*4

NAV64K

NAVCTR

NAVFLG

NAVMOD

NAVTYP

NAVVLD

NCI01

NCI02

NCI03

NCLI

NCL3F

NCL2

NCUVAL

NMTFT

NODAS

NOSNAP

NVAD2A

NVAD2B

NVAD3A

NVVMOD

GS > 64 knots flag Bool HNAVFS/DATSEL

Iter's of valid nav data inpt cnts HNAVFS/HNAVSL

GS > 4 kts: Integrate VelocitiBsol

Navigation mode GPS/MLS/IDD.. ndx

Navigation mode Type (2 worch_$CII

Navigation solution valid Bool

ATHCL Windshear filter internalfps

ATHCL Windshear filter internaZps2

ATHCL APC Integrator deg

ATHCL Accel damping term fps2

Filtered NCL2 dps

Gamma cmd feed fwd to APCDG deg

Nav Computions Valid Bool

Conversion factor (6076.1155)

DASOT Disable flag Bool

SNAP Disable flag Bool
Pointer to NAV2 Auto

Pointer to next NAV2 Auto

Pointer to NAV3 Auto

Vert Nay mode (GPS/MLS/IDD..)

HNAVFS/NAVIG

HNSWIT

HNAVSL

HNAVFS

ATHCL

ATHCL

ATHCL

ATHCL

ATHCL

VERCMD/ELEVP

HNAVFS

(constant)

DSTAR

DSTAR

DISNAV L*I

NAVCOM 1"2

NAVCOM L*I

NAVCOM 1"2

DISNAV 1"2

NAVCOM L*I

FCCOM R*4

FCCOM R*4

FCCOM R*4

FCCOM R*4

FCCOM R*4

FCCOM R*4

OUTCOM L*I

CON R*4

RECCOM L*2

RECCOM L*2

1"4

1"4

1"4

1"2

adrs PROGRESS/TUNPTH DISNAV

adrs PROGRESS DISNAV

adrs PROGRESS/TUNXTK DISNAV

ndx HNSWIT NAVCOM

OLDLAT

OLDWD

OLDWS

ONCRS

OPTALT

OTLERR

Select old Lat capture Bool

Old wind model (dir) deg

Old wind model (speed) kts

(Loc) On Course: FLAGS(18) Bool

PGA Optimum cruise Altitude ft

MLS Sgnl Outlier Errors (R/Az/EI)

VIEW FCCOM L*I

BLOW BCKCOM R*4

BLOW BCKCOM R*4

MLOG/LATCMD OUTCOM L*I

COMMON CDUCOM R*4

MLSEX NAVCOM _4

P

PDCOL

PDTCMD

PEDAL

PFI

PFPA

PGAMC

PHICMD

PHIERR

PHISYM

PITCH

Roll rate gyro input dps

Deadzoned Column position input in

Roll Rate Command dps

AFD Rud Ped + Trim deg

Filtered P dps

3D Progammed Flight Path Angle deg

Local GAMC for PAFD deg

Bank angle command deg

(PHICMD - ROLL) deg

Simulated A/P roll command deg

Pitch attitude (theta) deg

INIOM INPCOM R*4

ELEVP DISNAV R*4

LATRL FCCOM R*4

IOFLL INPCOM R*4

LATRL OUTCOM R*4

HVGUID NAVCOM R*4

ELEVP FCCOM R*4

LATRL FCCOM R*4

LATRL FCCOM F*4

NAVIG NAVCOM R*4

IOFLL INPCOM R*4



362

ITEM DESCRIPTION UNITS SET BY RE$_OM TYP

PMSWIT

PNAV64

PMODE

POSHAT

PKENG

PSTALT

PSTFPA

PSTTKA

PTR2D

PTR3D

PTR4D

PTR4DI

PVHAT

Previous value of MSWIT ndx FDSTR FCCOM 1"2

Prey value of NAV64K Bool SPDCMD FCCOM L*I

Prov/Mod/Act flight plan mode ndx EXECUTE/ROUTE DISNAV 1"2

MLS position estimate vector ft CFILT NAVCOM R*4

Pre-engage: FLAGS(l) Bool MLOG OUTCOM L*I
Pre-selected Altitude discreteBool MSPLGC DISNAV L*I

FPA preselect discrete Bool MSPLGC DISNAV L*I

Track angle preslct discrete Bool MSPLGC DISNAV L*I
2D Reference PTR ndx EXECUTE/HVGUID/

+++ NAVIG NAVCOM 1"2

3D Reference PTR ndx HVGUID NAVCOM 1"2

4D Reference PTR ndx HVGUID NAVCOM 1"2

Time-box ref Ptr (4D) ndx TGUID NAVCOM 1"2

Array(9) overlayng XHAT...ZDDH -- HNSWIT NAVCOM R*4

Q
QFBI

QX

Body pitch rate
Filtered (washed out) Q

Bias on Q

dps IOFLL INPCOM R*4

deg ELEVP FCCOM R*4

dps ELEVP OUTCOM R*4

R
ROMLS

RADALT

RADFT

RADHLD

RADIUS

RALC

RDME

RECWD

RECWDI

RECWD2

RGSDEV

RLMLS

RLOCDV

RLOUT

RM

RMP

RN

RNGLS

RNP

ROLL

RPTR

RSWADR

RTA INDX _Req Time of Arrival' waypnt

Yaw rate gyro input

MLS Range bias
Raw radar altitude ft

Best fit Earth rad of curvature ft

VCWS Radius Hold enabled Bool

Nom radius of Earth (3443.9186) ft

Dist before turn to apply ALC ft

MLS Range input ft

Recording Select Word in-use p.d.
Normal Recording Select Word p.d.

Alternate Recording Slct Word p.d.

ILS Glideslope Deviation deg

MLSM Enable (vs MLS NAV only) Bool

ILS Localizer Deviation deg

Roll-out engage: FLAGS(10) Bool
Local North radius of curvature nm

N R of C including A/C altitude nm
Local East radius of curvature nm

Range to LOC shack nm
E R of C including A/C altitude nm

Roll attitude (phi) deg

SNAP read pointer ndx
Adrs of Select Discrete adrs

ndx EXECUTE/LEG TIME

dps INIOM INPCOM R*4
ft RSCON (MLSEX) NAVCOM R*4

IOFLL INPCOM R*4

EKAD NAVCOM R*4

LATRL FCCOM L*I

(constant) CON R*4
HVGUID NAVCOM R*4
IOFLL INPCOM R*4

DSTAR/DASOT RECCOM 1"2

(VIEW) RECCOM 1"2

(VIEW) RECCOM 1"2
IOFLL INPCOM R*4

MLSEX NAVCOM L*I

IOFLL INPCOM R*4

MLOG OUTCOM L*I

ERAD NAVCOM R*4

ERAD NAVCOM R*4

ERAD NAVCOM R*4
HNAVSL BCKCOM R*4

ERAD NAVCOM R*4

IOFLL INPCOM R*4

SNAP/SNAPOUT RECCOM 1"2

(VIEW) RECCOM 1"4

m

+++

RTA PTR Active cntrpart of _RTA INDX'
RTA--TM ETA at the RTA waypoint--

RTA--WPT Name of _RTA' Waypoint
+++

RTN Radius of Turn (2D)

RTOD Conversion factor (180/pi)

RTRIM AFD Rudder Trim pot

XLAT RTE CDUCOM 1"2

ndx EXECUTE CDUCOM 1"2

sec LEG TIME CDUCOM 1"4

char EXECUTE/LEG TIME
XLAT RTE CDUCOM C'4

ft HVGUID NAVCOM R*4

dpr (constant) CON R*4

deg IOFLL INPCOM R*4



ITEM DESCRIPTION UNITS SET BY

RUDCMD

RUDMOD

RUDPOS

RUDTRM

RUN

RUNM

RWYHDG

RWYLAT

RWYLEN

RWYLON

RWYSEL

RYELEV

Rudder Command deg

Rudder Model deg

Rudder surface Pos deg

Rudder Trim deg

Flight Controls Run select Bool

Flight Controls Run Mode disc Bool

Runway heading (true)

LAT of Runway threshold

Length of Runway

LON of Runway threshold

MLS Runway Select index

Runway elevation (MSL)

deg

deg

ft

deg
ndx

ft

LATRL/PRFLT

IOFLL

IOFLL

LATRL

IOFLL

MLOG

EXECUTE

EXECUTE

EXECUTE

EXECUTE

(VIEW)

EXECUTE

SACVIB SAC Vibration (shaker) amp. ibs

SATINVW # (GPS) SATellites tracked cnt

SC Dist from T-box to wpt ft

SCMD Gnd Spd/4D Speed Cmd fps2

SDC Progress pt Vel command fps

SDCC Time box velocity fps

SDCOL SAC pitch pos in

SDD Progress pt Acc command fps/ft

SDWHL SAC roll pos in
SELFPA Selected FPA (FPA/GS/3D)

SEND BUF Signal HDL to send wpt bfrs

SEPR

SETGD

SFCOL

SFWHL

SHAKER

SIMALT

Dist between T-box and A/P

SET Guidance flags index

SAC pitch force
SAC roll force

Stick Shaker

Altitude Sim. airplane (init)

COMMON

GPSPRC

TGUID

SPDCMD/TGUID

HVGUID

TGUID

IOFLL

HVGUID

IOFLL

deg MSPLGC/VERCMD

Bool CDUFST/HDL

ft TGUID

ndx CDUFST/EXECUTE

ibs IOFLL

ibs IOFLL

Bool VERCMD

ft NAVIG

SIMCAS

SIMFLG

SIMHDG

SIMILS

SIMLAT

SIMLON

SINAZB

SINRH

SINTH

SINUS0

SINUS1

SINUS2

SINUS3

SLAT

SLLAT

SLLON

SLON

SLWCNT

SMMAGV

SMUHDG

SNENT

Air Speed Sim. airplane (init) kts

Simulated airplane ctrl word p.d.

Sim. A/P heading (init) deg
Enable SIMulated ILS Bool

Latitude Sim. airplane (init) deg

Longitude Sim. airplane (init) deg

Sin(AZ BRG) ()

Sin (RWYHDG) ()

Sin (HDGTRU) ()

Packed Sensor In Use word (i) p.d.

Packed Sensor In Use word (2) p.d.

Packed Sensor In Use word (3) p.d.

Packed Sensor In Use word (4) p.d.

Sin(latitude) ()

Slow Loop local IDDLAT deg

Slow Loop local IDDLON deg

Sin(longitude) ()

Exception Count for SLOW cnt

Mag Var for Sim A/P (init) deg

Simulated A/P Heading deg

SNAP table count ndx

NAVIG

VIEW/NAVIG

NAVIG

MLSEX

NAVIG

NAVIG

RSCON

EXECUTE

HNAVFS

SINUSE

SINUSE

SINUSE

SINUSE

HNAVFS

HNAVB/HNAVSL

HNAVB/HNAVSL

HNAVFS

SLOW

NAVIG

NAVIG

DSTAR

363

RESCOM TYP

OUTCOM R*4

INPCOM R*4

INPCOM R*4

FCCOM R*4

INPCOM L*I

OUTCOM L*I

DISNAV R*4

DISNAV R*4

DISNAV R*4

DISNAV R*4

NAVCOM 1"2

DISNAV R*4

FCCOM R*4

NAVCOM 1"2

NAVCOM R*4

FCCOM R*4

NAVCOM R*4

NAVCOM R*4

INPCOM L*I

NAVCOM R*4

INPCOM R*4

DISNAV R*4

CDUCOM L*I

NAVCOM R*4

CDUCOM 1"2

INPCOM R*4

INPCOM R*4

OUTCOM L*I

NAVCOM R*4

NAVCOM R*4

NAVCOM 1"2

NAVCOM R*4

NAVCOM L*I

NAVCOM R*4

NAVCOM R*4

NAVCOM R*4

DISNAV R*4

NAVCOM R*4

FCCOM 1"2

FCCOM 1"2

FCCOM 1"2

FCCOM 1"2

NAVCOM R*4

BCKCOM R*4

BCKCOM R*4

NAVCOM R*4

OUTCOM 1"4

NAVCOM R*4

NAVCOM R*4

RECCOM 1"2



364

SOAT

SPDLMT

SPFINH

SPINTG

SPL2

SPOB1

SPOB2

SPR7

SPREAL

SPTR

SQUAT

SROLL
SRST

SSTICK

STABP
STFAIL

STHET
STKE

STRUA

STRUB

STRUC

SWITCH

SYNCL

_SCRIPTION UNITS

Selected Outside Air Temp degF

4D Speed exceeds Limit Bool

Spoiler Feedback Inhibit Bool

Spare Integer / pad --

Spoiler pan #2 pos deg
Old YAWDI / Pad Bool

Pad / Recording test Bool

Spoiler pan #7 pos deg
Dummies (12) for debug ()

SNAP store pointer ndx

Squat (weight-on wheels) sw Bool
Sin(ROLL) ()

SNAP Reset flag Bool

SAC (vs. brolly) select Bool

Stabilizer Pos (n/u) PU

(signal) STatus FAIL arry(68) bits
Sin(PITCH) (Theta) ()

sin(TKE) ()

Self test outputs p.d.

Self test outputs p.d.

Self test outputs p.d.
STP Switch status word ()

Latrl (aileron) trim value deg

SET BY

CDUFST/TKOFF

SPDCMD

MLOG

IOFLL

IOFLL

SNAP

IOFLL

ACCPRC

DSTAR/SNAP

IOFLL

IOFLL

FDSTR/F2CMP

ACCPRC

HVGUID

PRFLT

PRFLT
PRFLT

PANEL

LATRL

RESCOM TYP

DISNAV R*4

FCCOM L*I

OUTCOM L*I

NAVCOM 1"2

INPCOM R*4

OUTCOM L*I

OUTCOM L*I

INPCOM R*4

FCCOM R*4

RECCOM 1"2

INPCOM L*I

NAVCOM R*4

RECCOM L*2

INPCOM L*I

INPCOM R*4

FCCOM 1"2

NAVCOM R*4

NAVCOM R*4

OUTCOM 1"2
OUTCOM 1"2

OUTCOM 1"2

FCCOM 1"2

FCCOM R*4

TANGSA

TAS

TASFPS

TASGS
TAT

TEND

TEND1

THDG

THRLIM

THROT

TIME

TIMERR

tan(GlideSlope Angle)

True Air Speed
True Air Speed

Airspeed (horizontal comp.)

True Air Temperature
2D _Turn END' flag

Second half Turn flag (4D)

IRS True heading

Throttle Limit placard

FFD Throtl hdl pos
Greenwich Mean Time

4D Guidance Time Error

TIME VLD Valid system GMT available
TIMPTH

TK

TKASUM

TKE

TKFLEN

TKHDZN
TKMAG

TKREL

TKSEL

TKTOMP

TOWPT

TOEPR

TOFLPS

TOG100

degC
Bool

Bool

deg
Bool

deg
sec

sec

Bool

Bool

deg
TIMe PaTH / Grd Speed mode

Track angle (True)

Track Angle Summer value

2D Track angle Error deg

Origin Rwy Length ft
Roll window for TRKHLD deg

Track angle (Magnetic) deg

Track Pointer on CTV deg
Track hold mode discrete Bool

Track Angle to Mode Panel p.d.

_To' waypoint pntr to WPT_ACT ndx
Take-Off EPR ()

Takeoff Flaps deg

100 M. sec. Toggle flag Bool

() EXECUTE/MLOG
kts IOFLL

fps HNAVFS/DATSEL
kts HNAVFS/DATSEL

IOFLL

HVGUID

TGUID

IOFLL

IOFLL

IOFLL

FCFAST/IDENT

TGUID

CDUEXC/IDENT

MSPLGC

HNAVFS

deg MSPLGC/LATCMD
HVGUID

CDUFST/TKOFF

COMMON
HNAVFS

LATCMD

MSPLGC

MSPRO

HVGUID

TKOFF

TKOFF

FCFAST

NAVCOM R*4

INPCOM R*4
NAVCOM R*4

NAVCOM R*4

INPCOM R*4

NAVCOM L*I

NAVCOM L*I

INPCOM R*4

INPCOM L*I

INPCOM R*4

DISNAV 1"4

CDUCOM R*4

CDUCOM L*I

DISNAV L*I

DISNAV R*4

DISNAV R*4

NAVCOM R*4

DISNAV 1"2

FCCOM R*4

NAVCOM R*4

DISNAV R*4

DISNAV L*I

OUTCOM 1"4

DISNAV 1"2

CDUCOM R*4

DISNAV R*4

NAVCOM L*I



ITEM

TOINDX

TOMPWD

TOPOS

TOSTAB

TOTIME

TOWD

TOWPT

TOWS

TRIMD

TRIMT

TRKBG

TRKHLD

TST3D

TST4D

TURN

TURN1

Vl

V2

VR

VACMD

VATRD

VATRL

VATRM

VATRR

VBCFLG

VBS

VCWSE

VCWS S

VDISC

VE

VEINS

VELHAT

VELVLD

VERPTH

VERSTR

VGSDOT

VGSFLG

VN

VNINS

VSTRA

VS TRB

VSTSEL

VORVLD

WD

WDTV

WDZNE

WEIGHT

WGSMSL

WHLINP

DESCRIPTION UNITS SET BY

Takeoff Index ndx

Overlay (i0) of Mode Panel Words--

Takeoff Runway offset

Takeoff Stabilizer pos

Clock time of the wpt

Takeoff Wind Direction

2D _To waypoint' Ptr

Takeoff Wind Speed

Stab trim down discrete

Stab trim run discrete

Track Bug delta

VCWS Track Hold enabled

3D Guidance o.k. test

4D Guidance o.k. test

2D _In TURN' flag

In Turn flag (4D)

ft

P.U.

sec

deg

ndx

kts

Bool

Bool

deg

Bool

Bool

Bool

Bool

Bool

CDUFST/TKOFF

MSPRO

TKOFF

TKOFF

TGUID

CDUFST/TKOFF

HVGUID

CDUFST/TKOFF

ELEVP/STABT

ELEVP/STABT

LATCMD

LATRL

EXECUTE

EXECUTE

HVGUID

TGUID

V-Speed kts

V-Speed kts

V-Speed kts

Vertical Acceleration Command fps2

Vertical trim discrete (down) Bool

Trim Left Select Bool

Vertical trim discrete (up) Bool

Trim Right Select Bool

Vert (3D) Be Careful flag Bool

Vertical Beam Sensed flag Bool

Velocity CWS Engage: FLAGS(5) Bool
VCWS Select discrete Bool

Debounced Discretes to DSP p.d.

TKOFF

TKOFF

TKOFF

VERCMD

IOFLL

IOFLL

IOFLL

IOFLL

VERCMD

VERCMD/MLOG

MLOG

DISFD

DISFD

Selected East velocity

IRS East velocity

MLS velocity estimate vector

IRS Velocities Valid

Vert Path (3D) engaged disc.

Vert. Steering signal

Along track acceleration

VGS vs. PFILT vel for CF IC BOOL

Selected North velocity kts

IRS North velocity kts

Vert. path HDOT Cmd K*fps

Vert. path gained HDOT K*fps

VERT Steer options p.d.

VOR #2 Rcvr Valid (always false) Bool

kts HNSWIT/DATSEL

kts IOFLL

fps CFILT
Bool IOFLL

Bool MSPLGC

fps2 VERCMD

fps2 HNSWIT/DATSEL

MLSEX

HNSWIT/DATSEL

IOFLL

VERCMD

VERCMD

VIEW

DISFD

Wind Direction deg

Watchdog Timer --
Var Wheel Dead Zone deg

A/C gross Weight ibs

WGS-84 reference height of MSL ft

Dead-zoned DWHL deg

BLOW

FCFAST/COMMON

COMMON/MLOG

IOFLL

COMMON/VIEW

LATRL

365

RESCOM TYP

DISNAV 1"2

OUTCOM 1"2

DISNAV R*4

DISNAV R*4

NAVCOM R*4

DISNAV R*4

DISNAV 1"2

DISNAV R*4

OUTCOM L*I

OUTCOM L*I

DISNAV R*4

FCCOM L*I

CDUCOM L*I

CDUCOM L*I

NAVCOM L*I

NAVCOM L*I

DISNAV R*4

DISNAV R*4

DISNAV R*4

FCCOM R*4

INPCOM L*I

INPCOM L*I

INPCOM L*I

INPCOM L*I

FCCOM L*I

FCCOM L*I

OUTCOM L*I

FCCOM L*I

DISNAV 1"2

NAVCOM R*4

INPCOM R*4

NAVCOM R*4

INPCOM L*I

DISNAV L*I

FCCOM R*4

DISNAV R*4

NAVCOM L*I

NAVCOM R*4

INPCOM R*4

FCCOM R*4

FCCOM R*4

FCCOM 1"2

FCCOM L*I

DISNAV R*4

OUTCOM 1"2

FCCOM R*4

INPCOM R*4

NAVCOM R*4

DISNAV R*4



366

ITEM DE$CRIPTIQN

WHLSHAP Exp Shaping for Whl input

WNDMOD Wind model selection index

WPT ACT Active Waypoint buffer

WRDC--NT # of (bytes) to o/p to STP

WS Wind Speed

WSPIN Wheel SPIN

XDDH

XDH

XGP IP

XHAT

XHTCRS

XHTFIN

XTACC

XTK

XTKI

XTKINS

XTKLIM

XTVEL

X DME

X ELI

X HRSW

YDDH

YDH

YHAT

YHTCRS

YHTFIN

YPROF

Y DME

Y EL1

ZOMLS

ZDDH

ZDH

ZDIF

ZERO

ZFW

ZHAT

Z ELIG

SET BY RESCOM TY____P

() COMMON/VIEW FCCOM R*4

ndx VIEW BCKCOM 1"2

-- EXECUTE/HVGUID NAVCOM ---

cnt FMTMG/GMSG/PANEL FCCOM 1"2

kts BLOW DISNAV R*4

Bool IOFLL INPCOM L*I

MLS/GPS along rwy accel

MLS/GPS along runway speed

GPIP X dist from Az/Loc ant

MLS/GPS X pos estimate

MSW of Integer XHAT ft

LSW (LSB = .25 FT) ft

Selected Cross Track accel fps2

Horizontal Path error ft

Integral of (XTKNOM - XTACC) fps

IRS Cross track acceleration fps

HORPTH Capture limit ft

Computed Cross RWY Velocity fps

X- coord of MLS DME antenna ft

X dist of MLS Ell ant from Az ft

Radar altitude switch point ft

MLS/GPS across rwy accel

MLS/GPS across runway speed

MLS/GPS Y pos estimate

MSW of Integer YHAT

LSW (LSB = .25FT)

Az C/L offset from Rwy C/L

Y- coord of MLS DME antenna

Y dist of MLS Ell ant from Az

fps2 HNSWIT/GPSPRC

fps HNSWIT/GPSPRC

ft MLSEX/GPSPRC

ft HNSWIT/GPSPRC

DASOT

DASOT

HNSWIT/DATSEL

HVGUID

LATRL

IOFLL

LATCMD

DATSEL/NAVIG

RSCON (MLSEX)

RSCON (MLSEX)

RSCON (MLSEX)

fps2 HNSWIT/GPSPRC

fps HNSWIT/GPSPRC

ft HNSWIT/GPSPRC

ft DASOT

ft DASOT

ft MLSEX/GPSPRC

ft RSCON (MLSEX)

ft RSCON

NAVCOM R*4

NAVCOM R*4

NAVCOM R*4

NAVCOM R*4

RECCOM 1"2

RECCOM 1"2

DISNAV R*4

DISNAV R*4

FCCOM R*4

INPCOM R*4

FCCOM R*4

FCCOM R*4

NAVCOM R*4

NAVCOM R*4

NAVCOM R*I

Ht of MLS plane above MSL @ Ell ft

MLS/GPS vertical acceleration fps2

MLS/GPS vertical speed fps

Z0 + comp due to Earth curve ft

Constant 0.0 ()

NAVCOM R*4

NAVCOM R*4

NAVCOM R*4

RECCOM 1"2

RECCOM 1"2

NAVCOM R*4

NAVCOM R*4

NAVCOM R*4

Zero Fuel Weight of airplane

MLS/GPS Z pos estimate

Z- coordinate of MLS EL1 ant

RSCON

HNSWIT/GPSPRC

HNSWIT/GPSPRC

HNAVML

(constant)

ibs PFINIT

ft HNAVFS/GPSPRC

ft RSCON (MLSEX)

NAVCOM R*4

NAVCOM R*4

NAVCOM R*4

NAVCOM R*4

CON R*4

CDUCOM R*4

NAVCOM R*4

NAVCOM R*4





REPORT DOCUMENTATION PAGE _o_ Appro,ed
OMB" No. 0704-0188

PUliK F_.G_ing buf_fl for this COIIEI_JOII Of i_,_.-._4tiO_ ,$ _tl/_etiKi tO 4verll)Qe.! hour I_f r_._. includt/_ U_e time for revRPJviflg instrucUoRs. _archlnQ ex,$tmg 4_Ji sources
gather,m I 4_1 mlintaml_ the mite nemlqm_ arm.coml_mmg arm rwlewe_j the co|ice, loft o1[ inTormdltlort _ comm¢_tts regardir_ this burden estimate or any oth_ am*_* nf ek_

colkKlrJo_ Of information..nclu4tng suggl,4*ons for reducing th*$ bur0en. ¢o Wasnmgton Headquarter, Services. Oirec2orate for InformatiOn Dictations and Rc_orts. 1-;I"_-J_'N-_

Oavl$ H_IhwIv. Su_UI 1204. ArtlnQtofl. VA 22202-4302. and to the Office of Mana<_ement and 6udQes. Paperwork Redt;_'tlon ProJect (0704.0 IN). Wl,hingto¢l. OC 20_].- ..........

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

Apri I 1993

4. TITLE AND SUBI.LE

Advanced Transport Operating System (ATOPS)

Flight Management/Flight Controls (FM/FC)

Software Description

6. AUTHOR(S)

David A. Wolverton, Richard W. Dickson,

Winston C. Clinedinst, and Christopher J.

7. PE_ORMING ORGANIZATION NAME(S) AND ADDRESS(IS)

Computer Sciences Corporation
3217 N. Armistead Averue

Hampton, Virginia 23666

3. REPORTTYPEAND DATESCOVERED
Contractor Re)ort Jan. 89 - Feb. 91

IS. FUNDINGNUMBERS

g.SPONSORING/MONITORINGAGENCY NAME(S)AND ADDRESS(IS)

NASA Langley Research Center

Hampton, VA 23681-0001

!ii._4i.EMENTARY NOTES "

Langley Technical Monitor-: Robert A. Kudlinski

Slominski
i

WU 505-64-13

8. PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

NASA CR-191457

12a. _STAiiU_ON/AVAILABILITY STATEMENT

Unclassified - Unlimited

Subject Category 06

13. ABSTRACT (Maximum 200 wo,_)

12b. DISTRIBUTION CODE

This document describes the flight software developed for the Flight Management/

Flight Controls (FH/FC) rlicroVAX computer used on the Transport Systems Research

Vehicle for Advanced Transport Operating Systems (ATOPS) research. The FM/FC

software computes navigation position estimates, guidance commands, and those

commands issued to the control surfaces to direct the aircraft in flight. Various

modes of flight are provided for, ranging from computer assisted manual modes to
fully automatic modes including automatic landing. This document contains a

high-level system overview as well as a description of each software module com-

prising the system. Digital systems diagrams are included for each major flight
control component and selected flight management functions.

14.SUIJECr TERMS

F1 ight Management,

cockpit, autoland,

systems

17. SECURITY O.ASSIFICATION
OF REPORT

Unclassified

NSN 7540-01-280-$500

Flight Controls, digital avionics, glass-

navigation, guidance, computerized flight

18, SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

Ig. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

1S. NUMBER OF PAGES

371
i

16. PRICE CODE
A16

20. LIMITATION OF ABSTRACT

UL

Standard Form 298 tRey 2-89)
P._erd_ hv ANU ¢,ld 71q.lit


